ABSTRACT

We present results from an experiment that randomized the expansion of electric grid infrastructure in rural Kenya. Electricity distribution is a canonical example of a natural monopoly. Randomized price offers show that demand for electricity connections falls sharply with price. Experimental variation in the number of connections, combined with administrative cost data, reveals considerable scale economies, as hypothesized. However, consumer surplus is far less than total construction costs at all price levels. Moreover, we do not find meaningful medium-run impacts on economic, health, and educational outcomes, nor evidence of spillovers to unconnected local households. These results suggest that current efforts to increase residential electrification in rural Kenya may reduce social welfare. We discuss how leakage of funds, reduced demand (due to red tape, low reliability, and credit constraints), and other factors may impact this conclusion.
I. INTRODUCTION

Investments in infrastructure, including transportation, water and sanitation, telecommunications, and electricity systems, are primary targets for international development assistance. In 2015, for example, the World Bank directed a third of its global lending portfolio to infrastructure. The basic economics of these types of investments—which tend to involve high fixed costs, relatively low marginal costs, and long investment horizons—can justify government investment, ownership, and subsequent regulation. While development economists have recently begun to measure the economic impacts of various types of infrastructure, including transportation (Donaldson 2013; Faber 2014), water and sanitation (Devoto et al. 2012; Patil et al. 2014), telecommunications (Jensen 2007; Aker 2010), and electricity systems (Dinkelman 2011; Lipscomb, Mobarak, and Barham 2013; Burlig and Preonas 2016; Chakravorty, Emerick, and Ravago 2016; Barron and Torero 2017), there remains limited empirical evidence that links the demand-side and supply-side economics of infrastructure investments, in part due to methodological challenges. For instance, in many settings it is not only difficult to identify exogenous sources of variation in the presence of infrastructure, but also difficult to obtain relevant administrative cost data on infrastructure projects.

In this paper, we analyze the economics of rural electrification. We present experimental evidence on both the demand-side and supply-side of electrification, specifically, household connections to the electric grid. We compare demand and cost curves, and evaluate medium-run impacts on a range of economic, health, and educational outcomes to assess the welfare implications of mass rural electrification.

The study setting is 150 rural communities in Kenya, a country where grid coverage is rapidly expanding. In partnership with Kenya’s Rural Electrification Authority (REA), we provided randomly selected clusters of households with an opportunity to connect to the grid at subsidized prices. The intervention generated exogenous variation both in the price of a grid connection, and in the scale of each local construction project. As a result, we can estimate the demand curve for grid connections among households and, in a methodological innovation of the current study, the average and marginal cost curves associated with household grid connection

1 In 2014 and 2015, the World Bank allocated nearly 40 percent of total lending towards its Energy and Mining, Transportation, and Water, Sanitation, and Flood Protection sectors (World Bank Annual Report 2015).
projects of varying sizes. We then exploit the exogenous variation in grid connections induced by the randomized subsidy offers to estimate electrification impacts.

We find that household demand for grid connections is lower than predicted, even at high subsidy rates. For example, lowering the connection price by 57 percent (relative to the prevailing price) increases demand by less than 25 percentage points. The cost of supplying connections, however, is high, even at universal community coverage when the gains from the economies of scale are attained. As a result, the estimated consumer surplus from grid connections is far less than the total connection cost at all coverage levels, amounting to less than one quarter of total costs.

We derive a second measure of the consumer surplus from a grid connection based on the subsequent benefits derived from consuming electricity, and find it similarly falls far below the total connection cost. In addition, we do not find economically meaningful or statistically significant impacts of electrification on a range of economic, health, and educational outcomes in the medium-run (roughly 18 months post-connection), and no evidence of spillover benefits for local households.

This constellation of findings points to a perhaps unexpected conclusion, namely, that investments in rural household electrification may reduce social welfare in our setting. We then consider the external validity of this finding by presenting and discussing empirical evidence on the role of excess costs from leakage during construction, and reduced demand due to bureaucratic red tape, low grid reliability, and credit constraints in our setting.

Electricity systems serve as canonical examples of natural monopolies in microeconomics textbooks. Empirical estimates in the literature date back to Christensen and Greene (1976), who examine economies of scale in electricity generation. In recent decades, initiatives to restructure electricity markets around the world have been motivated by the view that while economies of scale are limited in generation, the transmission and distribution of electricity continue to exhibit standard characteristics of natural monopolies (Joskow 2000).

We differentiate between two separate components of electricity distribution. First, there is an access component, which consists of physically extending and connecting households to the grid, and is the subject of this paper. Second, there is a service component, which consists of the ongoing provision of electricity. There is some evidence of economies of scale in both areas. Engineering studies show how the costs of grid extension may vary depending on settlement
patterns (Zvoleff et al. 2009) or can be reduced through the application of spatial electricity planning models (Parshall et al. 2009). With regards to electricity services, data from municipal utilities has been used to demonstrate increasing returns to scale in maintenance and billing (Yatchew 2000). While recent papers have examined the demand for rural electrification using both survey (Abdullah and Jeanty 2011) and experimental variation (Bernard and Torero 2015; Barron and Torero 2017), ours is the first study to our knowledge to combine experimental estimates on the demand for and costs of grid extensions, as well as provide experimental evidence on later impacts for households. By combining these three elements, we contribute to ongoing debates regarding the economics of rural electrification in low-income regions.

In Sub-Saharan Africa, roughly 600 million people currently live without electricity (IEA 2014), and achieving universal access to modern energy has become a primary goal for policymakers, non-governmental organizations, and international donors. In 2013, the U.S. launched a multi-billion-dollar aid initiative, Power Africa, with a goal of adding 60 million new connections in Africa. The United Nations Sustainable Development Goals include, “access to affordable, reliable, sustainable and modern energy for all.” In Kenya, the government has recently invested heavily in expanding the electric grid to rural areas, and even though the rural household electrification rate remains low, most households are now “under grid,” or within connecting distance of a low-voltage line (Lee et al. 2016). As a result, the “last-mile” grid connectivity we study has recently emerged as a political priority in Kenya.

At the macroeconomic level, there is a strong correlation between energy consumption and economic development, and it is widely agreed that a well-functioning energy sector is critical for sustained economic growth. There is less evidence, however, on how energy drives poverty reduction, and how investments in industrial energy access compare to the economic impacts of electrifying households. For rural communities, there are also active debates about whether increased energy access should be driven mainly by grid connections or via distributed solutions, such as solar lanterns and solar home systems (Lee, Miguel, and Wolfram 2016).

Although we find that the estimated consumer surplus from household grid connections is substantially less than the total connection cost at all coverage levels, universal access to electricity may still conceivably increase social welfare. For example, mass electrification might transform rural life in several ways: with electricity, individuals may be exposed to more media

2 In the 2009 Kenya Population and Housing Census, 5.1 percent of rural households use electricity for lighting.
and information, might participate more actively in public life and generate improvements in the political system or public policy, and children could study more and be more likely to obtain work outside of rural subsistence agriculture later in life. However, roughly 18 months after gaining an electricity connection, households show little evidence of any such gains, or their precursors. For instance, there are no meaningful impacts on objective political knowledge among respondents, nor on child test score performance. Of course, it is possible that the impacts of electrification take longer to materialize. Long-run impact studies will thus be useful to assess whether rural electrification should be a development policy priority in African countries.

The remainder of this paper is organized as follows. Section II presents several natural monopoly scenarios that are empirically tested; Section III discusses rural electrification in Kenya; Section IV describes the experimental design; Section V presents the main empirical results; Section VI discusses external validity, focusing on institutional and implementation challenges to rural electrification, and their implications; and the final section concludes.

II. THEORETICAL FRAMEWORK

In the classic definition, an industry is a natural monopoly if the production of a particular good or service by a single firm minimizes cost (Viscusi, Vernon, Harrington 2005). More advanced treatments elaborate on the concept of subadditive costs, which extend the definition to multiproduct firms (Baumol 1977). Textbook treatments point out that real world examples involve physical distribution networks, and specifically cite water, telecommunications and electric power (Samuelson and Nordhaus 1998; Carlton and Perloff 2005; Mankiw 2011).

A. Standard model

We consider the case of an electric utility that provides communities of households with connections to the grid. To supply these connections, the utility incurs a fixed cost to build a low-voltage (LV) trunk network of poles and wires in each community. In the standard model, illustrated in figure 1, panel A, the electricity distribution utility is a natural monopoly facing high fixed costs, constant or declining marginal costs, and a downward-sloping average total cost curve. As coverage increases, the marginal cost of connecting an additional household should decrease, as the distance to the network declines. At high coverage levels, the marginal cost is essentially the cost of a drop-down service cable that connects a household to the LV network.
Household demand for a grid connection reflects expectations about the difference between the consumer surplus from electricity consumption and the price of monthly electricity service.

The social planner’s solution is to set the connection price equal to the level where the demand curve intersects the marginal cost curve (p' in the figure). Due to the natural monopoly characteristics of the industry, the utility is unable to cover its costs at this price, and the social planner must subsidize the electric utility to make up the difference. In panel A, total consumer surplus from the electricity distribution system is positive at price p' since the area under the demand curve is greater than the total cost, represented by rectangle with height c' and width d'.

Note that we are assuming that, once connected, a household can purchase electricity at the social marginal cost. If this is true, there are no further social gains or losses from electricity consumption. An alternative approach to estimating the social surplus from a connection is to calculate the surplus from consuming electricity over the life of the connection. We implement this approach empirically in Section V.E.3

B. Alternative scenarios and potential externalities from grid connections

We illustrate an alternative scenario in figure 1, panel B. Here, the natural monopolist faces higher fixed costs. In this case, consumer surplus (the area underneath D) is less than total cost at all quantities, and a subsidized electrification program reduces social welfare.

In panel C, we maintain the same demand and cost curves as in panel B, but illustrate a case in which the social demand curve (D') lies above observed private demand (D). There may be positive externalities (spillovers) from private grid connections, especially in communities with strong social ties, where connected households share the benefits of power with neighbors. In rural Kenya, for instance, people may spend some time in the homes of neighbors who have electricity, watching TV, charging mobile phones, and enjoying better quality lighting in the evening. Another factor that could contribute to a gap between D and D' is the possibility that households have higher inter-temporal discount rates than policymakers. For example, if electrification allows children to study more and increases future earnings, there may be a gap if parents discount their children’s future earnings more than the social planner. Further, observed private demand may be low due to market failures, such as credit constraints or a lack of information about the long-run private benefits of a connection; what we are calling the social demand curve would also reflect the willingness to pay for grid connections if these issues were

3 Appendix A includes a more detailed discussion of the underlying theoretical framework.
resolved. In general, if D' lies above D, there may be a price at which the consumer surplus (the area underneath D') exceeds total costs. In the scenario depicted in panel C, D' is sufficiently high, and the ideal outcome is to offer full community coverage at price p''' and a subsidy equal to the rectangle with height $c''' - p'''$ and width d''' provided to the utility.

Which of these cases best fits the data? In this paper, we trace out the natural monopoly cost curves using experimental variation in the connection price and in the scale of each local construction project. The estimated curves correspond to the segments of figure 1 that range between the pre-existing rural household electrification rate level, which is roughly 5 percent at baseline in our data, and full community coverage ($d=1$). This is the policy relevant range for governments considering subsidized mass rural connection programs in communities where they have already installed distribution transformers.

One type of externality that we do not consider is the negative spillover from greater energy consumption, due to higher CO$_2$ emissions and other forms of environmental pollution. These would shift the total social cost curve up, making mass electrification less desirable. In the next section, we discuss aspects of electricity generation in Kenya that make these issues less of a concern in the study setting than they often are elsewhere.

III. Rural Electrification in Kenya

Kenya has a relatively “green” electricity grid, with most energy generated through hydropower and geothermal plants, and with fossil fuels representing just one third of total installed electricity generation capacity, which totaled 2,295 megawatts as of 2015. Installed capacity is projected to increase tenfold by the year 2031, with the proportion of electricity generated using fossil fuels remaining roughly the same over time.\(^4\) Thus Kenya appears poised to substantially increase rural energy access by relying largely on non-fossil fuel energy sources.

In recent years, there has been a dramatic increase in the coverage of the electric grid. For instance, in 2003, a mere 285 public secondary schools (3 percent of the total) across the country had electricity connections, while by November 2012, Kenyan newspapers projected that 100 percent of the country’s 8,436 secondary schools would soon be connected. The driving force

\(^4\) Specifically, in 2015, total installed capacity consisted primarily of hydro (36 percent), fossil fuels (35 percent), and geothermal (26 percent) sources. Based on government planning reports (referred to as Vision 2030), total installed capacity is expected to reach 21,620 MW by 2031, with fossil fuels (e.g., diesel and natural gas) representing 32 percent of the total. Many other African countries generate similar shares of electricity from non-fossil fuel sources (Lee, Miguel, and Wolfram 2016).
behind this push was the creation of REA, a government agency established in 2007 to accelerate the pace of rural electrification. REA’s strategy has been to prioritize the connection of three major types of rural public facilities, namely, market centers, secondary schools and health clinics. Under this approach, public facilities not only benefited from electricity but also served as community connection points, bringing previously off-grid homes and businesses within relatively close reach of the grid. In June 2014, REA announced that 89 percent of the country’s 23,167 identified public facilities had been electrified. This expansion had come at a substantial cost to the government, at over $100 million per year. The national household electrification rate, however, remained relatively low at 32 percent, with far lower rates in rural areas. Given this grid expansion, the Ministry of Energy and Petroleum identified last-mile connections for “under grid” households as the most promising strategy to reach universal access to power.

During the decade leading up to the study period, any household in Kenya within 600 meters of an electric transformer could apply for an electricity connection at a fixed price of $398 (35,000 KES). The fixed price had initially been set in 2004 and was intended to cover the cost of building infrastructure in rural areas. As REA expanded grid coverage, the connection price emerged as a major public issue in 2012, appearing with regular frequency in national newspapers and policy discussions. The fixed price seemed “too high” for many if not most poor, rural households to afford. However, Kenya Power, the national electricity utility, held firm, estimating the cost of supplying a single connection in a grid-covered area to be far higher at $1,435. After the government rejected its proposal to increase the price to $796 (70,000 KES) in April 2013, Kenya Power initially announced that it would no longer supply grid connections in rural areas at all, limiting supply to households that were a single service cable away from an LV line. As a result, the government agreed to temporarily provide Kenya Power with subsidies to cover any excess costs incurred, allowing the expansion of rural grid connections to continue at the same $398 price as before. In February 2014, the government ended these subsidies to Kenya Power, and it was again widely reported that the price would increase to $796. Ultimately, the $398 fixed price remained in place for households within 600 meters of a transformer.

5 REA provided us with estimates of the proportion of public facilities electrified (June 2014), the national electrification rate (June 2014), and overall REA investments (between 2012 and June 2015).
6 Baseline and endline Kenya Shilling (KES) amounts are converted into U.S. dollars at the 2014 and 2016 average exchange rates of 87.94 and 101.53 KES/USD, respectively. The fixed price of 35,000 KES was established in 2004 to reduce the uncertainty surrounding cost-based pricing. Anecdotally, there were concerns that service providers had earlier lowered the cost-based price in exchange for a bribe.
throughout the first phase of our study period, from late-2013 to early-2015, when study subsidies for electric grid connections were distributed and redeemed.

The government announced in May 2015 (after baseline data collection activities and redemption of most subsidy offers) that it had secured $364 million—primarily from the African Development Bank and the World Bank—to launch the Last Mile Connectivity Project (LMCP), a subsidized mass electrification program that plans to eventually connect four million “under grid” households, and that, once launched, would lower the fixed connection price to $171 (15,000 KES). This new price was based on the Ministry of Energy and Petroleum’s internal predictions for take-up in rural areas, and was revealed publicly in May 2015. The take-up data described in the next section were collected during the decade-long $398 price regime, and before any public announcement of the planned LMCP program.

IV. EXPERIMENTAL DESIGN AND DATA

A. Sample selection

This field experiment takes place in 150 “transformer communities” in Busia and Siaya, two counties that are typical of rural Kenya in terms of electrification rates and economic development and where population density is fairly high (see appendix table B1). Each transformer community is defined as all households located within 600 meters of a secondary electricity distribution (low-voltage, LV) transformer, the official distance threshold that Kenya Power used for connecting buildings at the standard price. The communities were sampled in cooperation with REA.7

Between September and December 2013, teams of surveyors visited each of the 150 communities to conduct a census of the universe of households within 600 m of the central transformer. This database, consisting of 12,001 unconnected households in total, served as the study sampling frame, and showed that 94.5 percent of households remained unconnected despite being “under grid” (Lee et al. 2016).

Although population density in our setting is fairly high, the average minimum distance between structures is 52.8 meters.8 These distances make illegal connections quite costly, since local pole infrastructure would be required to “tap” into nearby lines; in practice, the number of

7 See appendix A for further details and appendix figure B1 for a map of the sample communities.
8 In appendix figure B2, we present a map of a typical (in terms of residential density) transformer community, illustrating the degree to which unconnected households are within close proximity of an LV line.
illegal connections is negligible in the study sample (unlike in some urban areas in Kenya, where they are anecdotal more common).

For each unconnected household, we calculated the shortest (straight-line) distance to an LV line, approximated by either the transformer or a connected structure. To limit construction costs, REA requested that we limit the sampling frame to the 84.9 percent of households located within 600 meters of a transformer that were also no more than 400 meters away from a low-voltage line. Applying this threshold, we randomly selected 2,289 “under grid” households, or roughly 15 households per community.

B. Experimental design and implementation

Between February and August 2014, a baseline survey was administered to the 2,289 study households. We additionally collected baseline data for 215 already connected households, or 30.5 percent of the universe of households observed to be connected to the grid at the time of the census, sampling up to four connected households in each community, wherever possible.10

In April 2014, we randomly divided the sample of transformer communities into treatment and control groups of equal size, stratifying the randomization process to ensure balance across county, market status, and whether the transformer installation was funded early on (namely, between 2008 and 2010). The 75 treatment communities were then randomly assigned into one of three subsidy treatment arms of equal size. Following baseline survey activities in each community, between May and August 2014, each treatment household received an official letter from REA describing a time-limited opportunity to connect to the grid at a subsidized price.11 Households were given eight weeks to accept the offer and deposit an amount equal to the effective connection price (i.e., full price less the subsidy amount) into REA’s bank account.12 The treatment and control groups are characterized as follows:

1. High subsidy arm: 380 unconnected households in 25 communities are offered a $398 (100 percent) subsidy, resulting in an effective price of $0.

9 In other words, all households located within 400 meters of the transformer were included in the sampling frame, while some households located between 400 to 600 meters of the transformer were excluded.
10 See appendix A and appendix figure B3 for further details on the experimental design and implementation.
11 An example of this letter is provided in appendix figure B4.
12 Note that in our setting, one does not need a bank account to deposit funds into a specified bank account. The high subsidy (free treatment) group described below is not subject to the additional ordeal of traveling to town to access a bank branch, and interacting with bank staff to deposit funds into REA’s account. For those households that do need to pay something for a connection, the total time and transport cost of such a trip is roughly a few hundred Kenya Shillings (or a few U.S. dollars), far smaller than the experimental subsidy amounts.
2. Medium subsidy arm: 379 unconnected households in 25 communities are offered a $227 (57 percent) subsidy, resulting in an effective price of $171.

3. Low subsidy arm: 380 unconnected households in 25 communities are offered a $114 (29 percent) subsidy, resulting in an effective price of $284.

4. Control group: 1,150 unconnected households in 75 communities receive no subsidy and face the regular connection price of $398 throughout the study period.

 Treatment households also received an opportunity to install a basic, certified household wiring solution (a “ready-board”) in their homes at no additional cost. Each ready-board—valued at roughly $34 per unit—featured a single light bulb socket, two power outlets, and two miniature circuit breakers. Each connected household was fitted with a prepaid electricity meter at no additional charge. At the end of the eight-week period, treatment households could once again connect to the grid at the standard connection price of $398.

 After verifying payments, we provided REA with a list of households to be connected. This initiated a lengthy process to complete the design, contracting, construction, and metering of grid connections: the first household was metered in September 2014, the average connection time was seven months, and the final household was metered over a year later, in October 2015. Additional details are discussed in Section VI.B below.

 Between May and September 2016, we administered an endline survey to 2,217 study households, or 96.9 percent of the baseline sample. We surveyed an additional 1,345 households—or between six to eleven households per community—as part of a “spillover sample,” randomly sampling households that were observed to be unconnected at the time of the census but were not chosen for the baseline survey. Data from this spillover sample is used to study within-village external impacts. We also collected endline data from 208 of the 215 households that had already been connected at the time of the baseline census. As part of the endline survey, we additionally administered short English and Math tests to all 12 to 15-year olds in the endline sample households, or 2,317 children in total.

 Following Casey, Glennerster, and Miguel (2012), we registered two pre-analysis plans; these are available at http://www.socialscienceregistry.org/trials/350 and in appendix C. Pre-

13 The ready-board was designed and produced for the project by Power Technics, an electronic supplies manufacturer in Nairobi. A diagram of the ready-board is presented in appendix figure B5.
Analysis Plan A specifies the analyses of the demand and cost data, and Pre-Analysis Plan B specifies the analyses of electrification impacts in the endline survey data.

C. Data

The analysis combines a variety of survey, experimental, and administrative data, collected and compiled between August 2013 and December 2016. The datasets include: community characteristics data (N=150); baseline household survey data (N=2,504); experimental demand data (N=2,289); administrative community construction cost data (N=77); endline household survey data (N=3,770); and children’s test score data (N=2,310).¹⁴

D. Baseline characteristics

Table 1 summarizes differences between unconnected and connected households at baseline. Connected households are characterized by higher living standards across almost all proxies for income.¹⁵ These households have higher quality walls (made of brick, cement, or stone, rather than the typical mud walls), have higher monthly basic energy expenditures, and own more land and assets including livestock, household goods (e.g., furniture), and electrical appliances. Most unconnected households in our sample (92 percent) rely on kerosene as their primary source of lighting, while only 6 and 3 percent of unconnected households own solar lanterns and solar home systems, respectively.

In appendix table B2, we report baseline descriptive statistics and perform randomization checks. On average, 63 percent of respondents are female, just 14 percent have attended secondary school, 66 percent are married, and, in terms of occupation, 77 percent are primarily farmers. These are overwhelmingly poor households, as evidenced by the fact that only 15

¹⁴ See appendix A for additional details.
¹⁵ These patterns are consistent with the stated reasons for why households remain unconnected to electricity. In appendix figure B6, we show that, at baseline, 95.5 percent of households cited the high connection price as the primary barrier to connectivity. The second and third most cited reasons—which were the high cost of internal wiring (10.2 percent) and the high monthly cost (3.6 percent)—are also related to costs. Note that no households said they were unconnected because they were waiting for a lower connection price, or a government-subsidized rural electrification program. In fact, prior to our intervention, there were concerns that the price would increase (as noted above). In appendix figure B7, we present a timeline of project milestones and connection price-related news reports during the study period. Further, during the intervention, 397 households provided a reason for why they had declined a subsidized offer and not one cited the possibility of a lower future price. Taken together, these patterns alleviate concerns that households were anticipating a subsidized government mass electrification program.
percent have high-quality walls. Households have 5.3 members on average. Households spend $5.55 per month on (non-charcoal) energy sources, primarily kerosene.16

We test for balance across treatment arms by regressing household and community characteristics on indicators for the three subsidy levels, and conduct F-tests that all treatment coefficients equal to zero. For the 23 household-level and two community-level variables analyzed, F-statistics are significant at 5 percent for only two variables, namely, a binary variable indicating whether the respondent could correctly identify the presidents of Tanzania, Uganda, and the United States (a measure of political awareness) and monthly (non-charcoal) energy spending, indicating that the randomization created largely comparable groups.

V. Results

A. Estimating the demand for electricity connections

In figure 2, we plot the experimental results on the demand for grid connections. Take-up of a free grid connection offer is nearly universal, but demand falls sharply with price, and is close to zero among the low subsidy treatment group, as well as in the control (no subsidy) group. Panel A presents the experimental results and compares them to the government’s “prior” on demand, namely, the Ministry of Energy and Petroleum’s internal predictions for take-up in rural areas. The government demand curve—which we learned of in early-2015 via a government report—was developed independently of our project and served as justification for the planned LMCP price of $171 (15,000 KES). A key finding is that, even at generous subsidy levels, actual take-up is significantly lower than predicted by the government (or by our team, see appendix figure B8).17 In panels B and C, we show that households with high-quality walls and greater earnings in the last month, respectively, had higher take-up rates in the medium and low subsidy arms, suggesting that demand increases at higher incomes.

16 In June 2014, the standard electricity tariff for small households was roughly 2.8 cents per kWh. As a point of comparison, taking into consideration fixed charges and other adjustments, $5.55 translates into roughly 30 kWh of electricity consumption, which is enough for basic lighting, television, and fan appliances each day of the month.

17 The government report projected take-up in rural areas nationally, rather than in our study region alone, and this is one possible source of the discrepancy. Moreover, the government report does not clearly specify the timeframe over which households would be asked to raise funds for a connection, somewhat complicating the comparison.
If we extrapolate the [1.3, 7.1] segment of the demand curve through the intercept, the area under the demand curve is just $12,421. Based on average community density of 84.7 households, this implies an average valuation of just $147 per household.

We estimate the following regression equation:

$$y_{ic} = \alpha + \beta_1 T^L_c + \beta_2 T^M_c + \beta_3 T^H_c + X'_c \gamma + X'_{ic} \lambda + \epsilon_{ic}$$

(1)

where y_{ic} is an indicator variable reflecting the take-up decision for household i in transformer community c. The binary variables T^L_c, T^M_c, and T^H_c indicate whether community c was randomly assigned into the low, medium, or high subsidy arm, respectively, and the coefficients β_1, β_2, and β_3 capture the subsidy impacts on take-up. Following Bruhn and McKenzie (2009), we include a vector of community-level characteristics, X_c, containing variables used for stratification during randomization (see Section IV.B). In addition, we include a vector of baseline household-level characteristics, X_{ic}, containing pre-specified covariates that may also predict take-up (including household size, the number of chickens owned, respondent age, high-quality walls, and whether the respondent attended secondary school, is not a farmer, uses a bank account, engages in business or self-employment, and is a senior citizen). Standard errors are clustered by community, the unit of randomization.

Table 2 summarizes the results of estimating equation 1, where column 1 reports estimates from a model that includes only the treatment indicators, and column 2 includes the household and community controls. All three subsidy levels lead to significant increases in take-up: the 100 percent subsidy increases the likelihood of take-up by roughly 95 percentage points, and the effects of the partial 57 and 29 percent subsidies are much smaller, at 23 and 6 percentage points, respectively. Columns 3 to 8 include interactions between the treatment indicators and correlates of household economic status, as well as community variables, which are listed in the column headings. Take-up in treatment communities is differentially higher in the low and medium subsidy arms for households with wealthier and more educated respondents;

18 In Section V.C, we discuss alternative assumptions regarding demand in the unobserved [0, 1.3] domain.
19 We focus on this non-parametric specification after rejecting the null hypothesis that the treatment coefficients are linear in the subsidy amount (F-statistic = 23.03), a choice we specified in our pre-analysis plan.
for instance, the coefficient on the interaction between attended secondary school and the medium subsidy indicator is 19.5 percent.20

Based on the findings in Bernard and Torero (2015), one might expect take-up to be higher in areas where grid connections are more prevalent if, as they argue, exposure to households with electricity leads individuals to better understand its benefits and value it more. Yet when we include an interaction with the baseline community electrification rate in column 6, or an interaction with the proportion of neighboring households within 200 meters connected to electricity at baseline (column 7), we find no meaningful interaction effects.21

B. Estimating the economies of scale in electricity grid extension

An immediate consequence of the downward-sloping demand curve estimated above is that the randomized price offers generate exogenous variation in the proportion of households in a community that are connected as part of the same local construction project. This novel design feature allows us to experimentally assess the economies of scale in grid extension. As hypothesized, we find considerable scale economies. In addition, we find no evidence of endogeneity as OLS and IV estimates of the effect of scale (e.g., the number of connections) on the average total cost per connection (“ATC”) are no different.

In the Kenya Power administrative data across all projects in the sample, the actual ATC is $1,813. While this seems high, it is in line with several alternative estimates, including: (1) Kenya Power’s public estimate of $1,435 per rural connection; (2) the Ministry of Energy and Petroleum’s estimate of $1,602; and (3) a consultant’s estimated range of $1,322 to $1,601 in urban and rural areas, respectively (Korn 2014).22

In figure 3, we plot the fitted curve (light-grey curve) from a regression estimating the ATC as a quadratic function of community coverage, \(Q_c \) (where coverage takes on values from 0

20 In appendix table B3, we compare the characteristics of households choosing to take up electricity across treatment arms. Households that paid more for an electricity connection (i.e., the low subsidy arm) are wealthier on average than those who paid nothing (high subsidy), i.e., they are better educated, more likely to have bank accounts, live in larger households with high-quality walls, spend more on energy, and have more assets. In appendix tables B4A to B4E, we report all related regressions specified in Pre-Analysis Plan A, for completeness.

21 Of course, this does not rule out the possibility of a differential effect at higher levels of electrification, since baseline household electrification rates are generally low in our sample of communities (the interquartile range is 1.8 to 7.8 percent). Also, since community-level characteristics, such as income, are likely positively correlated across households, the lack of statistically significant coefficients may reflect the offsetting joint impacts of negative take-up spillovers and positively correlated take-up decisions; future research could usefully explore these issues.

22 Elsewhere, rural grid connection costs have been observed to be similar, ranging from $1,100 per connection in Vietnam to $2,300 per connection in Tanzania (Castellano et al. 2015).
to 100). The quadratic function does not provide a good fit to the data: it predicts considerably lower costs at intermediate coverage levels while greatly overstating them at universal coverage. Instead, we focus on an alternative functional form for ATC featuring a community-wide fixed cost and linear marginal costs:

\[\Gamma_c = \frac{b_0}{Q_c} + b_1 + b_2 Q_c \]

(2)

The nonlinear estimation of equation 2 yields coefficient estimates (and standard errors) of \(b_0 = 2287.8 \) (s.e. 322.8) for the fixed cost, \(b_1 = 1244.3 \) (s.e. 159.0), and \(b_2 = -6.1 \) (s.e. 3.4). We plot the predicted values from this nonlinear estimation in figure 3 (dark-grey curve). We then take the derivative of the total cost function (which is obtained by multiplying equation 2 by \(Q_c \)) to estimate the linear marginal cost function:

\[MC_c = b_1 + 2b_2 Q_c = \$1244.30 - (\$12.20)Q_c \]

(3)

While this choice of functional form differs from our pre-specified regression model, we believe that imposing linear marginal costs is both economically intuitive (e.g., as coverage increases, the marginal cost of connecting an additional household decreases) and closely matches the observed data. Regardless of the exact functional form, though, average costs decline in the number of households connected, as in the textbook natural monopoly case.

While there are strong initial economies of scale, we also document that the incremental cost savings appear to decline at higher levels of community coverage, and the estimates imply an average cost of approximately \$658 per connection at universal coverage (\(Q_c = 100 \)).

23 Note that in Figure 3, we plot fitted curves by combining two sets of cost data. First, for each community in which the project delivered an electricity connection (n=62), we received budgeted costs for the number of poles and service lines, length of LV lines, and design, labor and transportation costs. We refer to these as “sample” data. Second, REA provided us with budgeted costs for higher levels of coverage (i.e., at 60, 80, and 100 percent of the community connected) for a subset of the high subsidy arm communities (n=15). We refer to these as “designed” data. It is important to note that REA followed the same costing methodology for both sets of cost data (e.g., the same personnel visited the field sites to design the LV network and estimate the costs). This ensured comparability between budgeted estimates for sample and designed communities. Combining the two sets of cost data (N=77) enables us to trace out the ATC at all coverage levels. See appendix A for a discussion of the regressions in which we estimate the impact of either the number of connections or community coverage on the ATC.

24 Despite this poor fit, we include this result because it was specified in our pre-analysis plan. In retrospect, it was an oversight on our part to fail to include the standard fixed cost at the community level in the model.

25 Appendix table B5A reports actual and predicted ATC values at various coverage levels.

26 In appendix figure B9A, we compare the predicted curve from nonlinear estimation using only sample community data (N=62) against the predicted curve using both sample and designed community data (N=77). In appendix figure B9B, we compare alternative functional forms for costs, and the same conclusions hold across cases.
In communities with larger populations, the higher density of households may potentially translate into a larger impact of scale on ATC. In appendix table B5B, column 2, we report the results of regressions in which we estimate the impact of project scale (i.e., the number of connections, \(M \), and a quadratic term, \(M^2 \)) on ATC, including interactions between community population and both \(M \) and \(M^2 \). While there are no significant effects in the range of densities observed in our sample, it seems plausible that per household connection costs could be higher in other parts of rural Kenya with far lower rates of residential density. There is also no evidence that higher average land gradient is associated with higher ATC.\(^{27}\)

C. Experimental approach to estimating net welfare

In figure 4, we compare the experimental demand curve with the average and marginal cost curves (panel A), and then estimate total cost and consumer surplus at full coverage (panel B). We first focus on the revealed preference demand estimates, and discuss issues of credit constraints and informational asymmetries below in Section VI.B.

The main observation is that the estimated demand curve for an electricity connection does not intersect the estimated marginal cost curve. To illustrate, at 100 percent coverage, we estimate the total cost of connecting a community to be $55,713 based on the mean community density of 84.7 households. In contrast, as noted in Section V.A, consumer surplus at this coverage level is far less, at only $12,421, or less than one quarter the costs. The consumer surplus is substantially smaller than total connection costs at all quantity levels, suggesting that rural household electrification may reduce social welfare. This result is robust to considering the uncertainty in the demand and cost estimates (see appendix figure B9C).

Specifically, our calculations suggest that a mass electrification program would result in a welfare loss of $43,292 per community.\(^{28}\) To justify such a program, discounted future social

\(^{27}\text{Based on Dinkelman (2011), we expect land gradient to be positively correlated with ATC, but in our setting, the correlation is, if anything, negative. While the result is counterintuitive, note that there is little variation in average land gradient in our sample, which ranges from 0.79 to 7.76 degrees. While land gradient may be an important predictor of the costs of extending high-voltage lines in KwaZulu-Natal, South Africa, as in Dinkelman (2011), our data suggest that it is less important in predicting construction costs across smaller areas; see appendix figure B10.}\)

\(^{28}\text{To calculate consumer surplus, we estimate the area under the unobserved [0, 1.3] domain by projecting the slope of the demand curve in the range [1.3, 7.1] through the intercept. The 1.3 percent figure is the proportion of the control group that chose to connect to the grid during the study period, which, for comparability to other points on the demand curve, we assume would happen over the same eight-week period as our offer. If anything, this assumption yields higher consumer surplus than alternative, perhaps more reasonable, assumptions on timing. Appendix figure B11 considers the sensitivity of our results on welfare loss to alternative demand curve\}
welfare gains of $511 would be required for each household in the community, above and beyond any economic or other benefits already considered by households in their own private take-up decisions. These welfare gains could take several possible forms, including spillovers in consumption or broader economic production, an issue we explore below. Credit constraints or imperfect household information about the long-run benefits of electrification may both also contribute to lower demand, issues we turn to in the next section, while negative pollution externalities could raise the social costs of grid connections.

In an alternative scenario, illustrated in appendix figure B12, we estimate the demand for and costs of a program structured like the LMCP, which planned to offer a connection price of $171. In this case, only 23.7 percent of households would take-up based on the experimental estimates, and thus unless the government were willing to provide additional subsidies or financing, the resulting electrification level would be low. At 23.7 percent coverage, there is an analogous welfare loss of $22,100 per community, or $1,099 per connected household.

D. Economic impacts of rural electrification

Much of the recent literature on the microeconomics of electrification focuses on estimating the impacts of increasing access to electricity for rural households and communities. However, there is substantial variation in the types of outcomes examined, as well as the magnitudes of impacts estimated.29 Furthermore, non-experimental studies typically face challenges in identifying credible exogenous sources of variation in electrification status. In contrast, we exploit experimental variation in grid electrification to test the hypothesis that households connected to the electricity grid enjoy improved living standards and impacts on other life outcomes in the medium-run, roughly 18 months post-connection.

We limit our discussion here to a set of ten pre-specified “primary” outcomes that are meant to capture several important dimensions of overall living standards in the study setting. The primary outcomes of interest include: household electrification status (denoted outcome $P1$); grid electricity spending in the past month ($P2$); the proportion of household members that are employed or running their own businesses ($P3$); total hours worked in the past week ($P4$); total

29 For example, some studies find that access to electricity increases measures of rural living standards such as income and consumption (Khandker, Barnes, and Samad 2012; Khandker et al. 2014; van de Walle et al. 2015; Chakravorty, Emerick, and Ravago 2016), while others find no evidence of impacts on labor markets outcomes, assets, or housing characteristics (Burlig and Preonas 2016); see Lee, Miguel and Wolfram (2017) for a review.

assumptions. In panel C of that figure, the most conservative case, demand is a step function and intersects the vertical axis at $3,000. The welfare loss is still $32,517 per community in this case.
asset value \((P5)\); annual per capita consumption of major food items \((P6)\); recent health symptoms \((P7)\); life satisfaction \((P8)\); political and social awareness \((P9)\); and average scores on an English and Math test administered to adolescent children \((P10)\). Additional details on the construction of variables are provided in Pre-Analysis Plan B in appendix C.

Due to the relatively low take-up rates in the low and medium subsidy groups, we first limit the sample to include only a comparison between the high subsidy group and the control group and estimate intention-to-treat (ITT) specifications. In Table 3, column 2, we report the results of estimating the following regression for each of the 10 primary outcomes:

\[
y_{ic} = \beta_0 + \beta_3 T_{Hc} + X'_cA + Z'_{1ic} \Gamma + \epsilon_{ic} \tag{4}
\]

where \(y_{ic}\) represents the primary outcome of interest for household \(i\) in community \(c\) and \(T_{Hc}\) is a binary variable indicating whether community \(c\) was randomly assigned into the high-value subsidy treatment. As in equation 1, we include a vector of community-level characteristics, \(X_c\), as well as a vector of pre-specified, household-level characteristics, \(Z_{1ic}\), and standard errors are clustered at the community-level.

We then estimate treatment-on-treated (TOT) results using data from all three of the subsidy treatment groups. In Table 3, column 3, we report the results of estimating the following equation for each of the primary outcomes:

\[
y_{ic} = \beta_0 + \beta_1 E_{ic} + X'_cA_2 + Z'_{1ic} \Gamma_2 + \epsilon_{ic} \tag{5}
\]

where \(E_{ic}\), is a binary variable reflecting household \(i\)’s electrification status. We instrument for \(E_{ic}\) with the three indicator variables indicating whether community \(c\) was randomly assigned to the low, medium, or high subsidy group.

Column 4 then reports the false discovery rate (FDR)-adjusted q-values corresponding to the coefficient estimates in column 3, which limit the expected proportion of rejections within a hypothesis that are Type I errors (i.e., false positives).\(^\text{30}\)

Perhaps surprisingly, but consistent with the results in Section V.B, we do not find evidence of substantial economic or other impacts stemming from household electrification. There are no detectable effects on consumption levels, asset ownership, reported health outcomes, or child test score performance. Although there are small, marginally statistically

\(^{30}\) As per our pre-analysis plan, we follow the FDR approach in Casey et al. (2012) and Anderson (2008).
significant impacts on total hours worked ($P5$) and life satisfaction ($P8$), these effects do not survive the FDR multiple testing adjustment. Simply put, we detect few changes in rural Kenyan households connected to electricity in the medium-run.

These effects are summarized in panel B of table 3, which combines the four primary economic outcomes ($P3$-$P6$) into a mean effect Economic Index, and combines the four primary non-economic outcomes ($P7$-$P10$) into a mean effect Non-Economic Index.\footnote{Note that these indices were not specified in the pre-analysis. We believe these groupings are still useful in summarizing related results and providing some additional statistical power in the analysis.} The average economic effect is small at 0.03 (in standard deviation units), and reasonably precisely estimated (s.e. 0.08), and the average effect on the non-economic variables is also small at -0.02 (in standard deviation units, with s.e. 0.07).

Energy consumption increases in the newly connected households, but overall consumption levels are quite low. The treatment effect on monthly electricity spending is 2.00 to 2.20, a miniscule amount corresponding to electricity consumption of roughly 3 kWh per month. The data indicate that treated household acquired few additional appliances, providing an explanation for the overall lack of positive impacts. For example, in the ITT regression of the number of appliances owned on the high subsidy indicator, the treatment effect is just 0.2; while significant at 95 percent confidence, this effect size represents a small increase over the control mean of 1.8 appliances owned.

Moreover, as shown in appendix table B6, there is no evidence of any meaningful or statistically significant spillover impacts to local households across the ten primary outcomes.

E. Alternative approach to estimating consumer surplus

Alternatively, we can estimate consumer surplus from grid connections using an application of Dubin and McFadden’s (1984) discrete-continuous model, similar to Barreca et al. (2016) and Davis and Killian (2011). This approach then allows us to simulate consumer surplus for different cases regarding both baseline consumption levels and long-run consumption growth, under certain functional form assumptions on the consumer demand curve.

Households are assumed to make a joint decision to acquire a grid connection and consume electricity, and consumer surplus from the connection is then measured as the discounted sum of surplus from consuming electricity over the life of the connection. We assume
zero consumer surplus from electricity without a grid connection.32 Consumer surplus measures depend on the level of monthly electricity consumption, the demand elasticity for electricity (i.e., the slope of the demand curve), the functional form of the demand curve, the long-run cost of supplying electricity, and the intertemporal discount rate.

This study’s experimental variation in grid connection allows us to measure the shift in the demand curve for electricity directly based on connected households’ consumption levels. Lacking demand elasticity estimates in Kenya, we use U.S. estimates as a lower bound (e.g., Ito 2014), and report consumer surplus under a range of plausible assumptions. We assume linear demand (following Barreca et al. 2016 and Davis and Killian 2011), a price equal to the constant long-run cost of electricity of $0.12 per kWh, and an annualized 15 percent discount rate.

Table 4 reports calculated consumer surplus across a range of demand elasticity and consumption cases. In the study sample, the median monthly electricity consumption level for newly connected households is just 3.6 kWh, an extremely small amount, as noted above. At 5 kWh per month (column 1), consumer surplus ranges from $49 to $147 (depending on demand assumptions), and thus falls well below the average connection cost in the experiment, which is in the range of $1,200 to $1,800.33 This result holds even if we assume that energy consumption grows at a rapid 10 percent per year (see column 2); in this case consumer surplus ranges from $110 to $329. Column 3 reports estimates at 40 kWh per month, the median consumption level reported by connected households in our sample at baseline. As further validation of this approach, consumer surplus at low demand elasticities exceeds $400 (the private cost of a grid connection). However, it remains below the average connection cost in the experiment.34

In contrast, administrative data from Kenya Power indicates that the median connected household in Nairobi consumes 72.8 kWh per month.35 At roughly this level of consumption (75 kWh per month, column 4), the rural connections would appear to potentially yield positive social welfare, with consumer surplus ranging from $733 to $2,200.

32 Note that this will, if anything, lead us to overestimate the consumer surplus from acquiring a grid connection since a subset of sample households receive electricity from solar home systems or car batteries.

33 Note that consumer surplus at the lowest demand elasticity is the same as the average valuation obtained in the experiment, even though we arrive at these figures using two distinct methodologies.

34 Furthermore, a full accounting of net welfare for the fraction of households that were initially connected to the grid should include the costs of the transformer and medium-voltage network extensions. Including these would greatly increase the overall costs of rural electrification.

35 In appendix table B7, we present various benchmarks for monthly electricity consumption throughout Kenya.
VI. EXTERNAL VALIDITY

These results suggesting that rural electrification may reduce social welfare are perhaps surprising. Previous analyses have found substantial benefits from electrification (Dinkelman 2011, Lipscomb, Mobarak, and Barham 2013), though they have not directly compared benefits to costs. In the Philippines, Chakravorty, Emerick, and Ravago (2016) find that the physical cost of grid expansion is recovered after just a single year of realized expenditure gains. A World Bank report argues that household willingness to pay for electricity—which is calculated indirectly based on kerosene lighting expenditures—is likely to be well above the average supply cost in South Asia (World Bank 2008). Most of these studies, however, use non-experimental variation or indirect measures of costs and benefits, and it is possible they do not fully account for unobserved variables correlated with both electrification propensity and improved economic outcomes. In table 1, for example, we document a strong baseline correlation between household connectivity and living standards, and this pattern is consistent with the possibility of meaningful omitted variable bias in some non-experimental studies.

In this section, we consider factors that could drive down costs or drive up demand in our setting, affecting the external validity of our results. Specifically, we present evidence on the role of excess construction costs from leakage, and reduced demand due to bureaucratic red tape, low grid reliability, credit constraints, and possibly unaccounted for spillovers.

A. Excess costs from leakage

In appendix table B8, we report the breakdown of budgeted versus invoiced electrification costs per community. The budgeted (ex-ante) costs for each project are based on LV network drawings prepared by REA engineers. The invoiced (ex-post) costs are based on actual final invoices submitted by local contractors, detailing the contractor components of the labor, transport, and materials that were required to complete each project. In total, it cost $585,999 to build 101.6 kilometers of LV lines to connect 478 households through the project.

Overall, budgeted and invoiced costs per connection were nearly identical, amounting to $1,201 and $1,226, respectively. In other words, contractors submitted invoices that were only

36 An example of an LV network drawing is provided in appendix figure B13.
37 See appendix A for additional details.
1.7 percent higher than the budgeted amount on average. These cost figures reflect the reality of grid extension in rural Kenya. However, it is possible that they are higher than would ideally be the case due to leakage and other inefficiencies that are common in low-income countries (Reinikka and Svenson 2004). In our context, it is possible that leakage occurred during the contracting work, in the form of over-reporting labor and transport, which may be hard to verify, and sub-standard construction quality (e.g., using fewer materials than required).

To measure leakage, we sent teams of enumerators to each treatment community to count the number of electricity poles that were installed, and then compared the actual number of poles to the poles included in the project designs and contractor invoices. While there is minimal variation between ex-ante and ex-post total costs, most contractors’ projects showed large differences in the number of observed versus budgeted poles with nearly all using fewer poles: the number of observed poles was 21.3 percent less than budgeted, a substantial discrepancy.

Labor and transport costs may also reflect leakage. Labor is typically invoiced based on the number of declared poles, and we showed above that those were inflated. Similarly, transport is invoiced based on the declared mileage of vehicles carrying construction materials. In appendix table B9, we analyze three highly detailed contractor invoices (for nine communities) that were made available to us. These data contain evidence of over-reported labor costs associated with the electricity poles, at 11.0 percent higher costs than expected, and over-reported transport costs: based on a comparison between the reported mileage and the travel routes between the REA warehouse and project sites (suggested by Google Maps), invoiced travel costs were 32.9 percent higher than expected.

Taken together, these findings indicate that electric grid construction costs may be substantially inflated due to mismanagement and corruption in Kenya, suggesting that improved
contractor performance could reduce costs and possibly improve project quality and safety.41 On the other hand, note that even with a 20 to 30 percent reduction in construction costs, mass rural household electrification would still lead to a reduction in overall social welfare based on the demand and cost estimates in figure 4, as well as the consumer surplus results in table 4 below.

\textit{B. Factors contributing to lower demand for electricity connections}

We next discuss several factors that potentially contribute to lower levels of observed household demand for electricity connections, including bureaucratic red tape, low grid reliability, credit constraints, and unaccounted for positive spillovers.

Low levels of demand may be partly attributable to the lengthy and bureaucratic process of obtaining an electricity connection. In our sample, households waited a staggering 188 days after submitting their paperwork before they began receiving electricity. The delays were mainly caused by time lags in project design and contracting, as well as in the installation of meters.42 The World Bank similarly estimates that in practice it takes roughly 110 days to connect new business customers in Kenya (World Bank 2016).

Another major concern is the reliability of power. Electricity shortages and other forms of low grid reliability are well documented in less developed countries (Steinbuks and Foster 2010; Allcott, Collard-Wexler, and O’Connell 2016). In rural Kenya, households experience both short-term blackouts, which last for a few minutes up to several hours, and long-term blackouts, which can last for months and typically stem from technical problems with local transformers. The value a household places on an electric grid connection could be substantially lower when service is this unreliable.

During the 14-month period from September 2014 to October 2015 when households were being connected to the grid, we documented the frequency, duration, and primary reason for the long-term blackouts impacting sample communities. In total, 29 out of 150 transformers (19 percent) experienced at least one long-term blackout. On average, these blackouts lasted four months, with the longest lasting an entire year. During these periods, households and businesses did not receive any grid electricity. The most common reasons included transformer burnouts,

41 To the extent costs are high because contractors are over-billing the government, leakage may simply result in a transfer across Kenyan citizens and not a social welfare loss. The social welfare implications would depend on the relative weight the social planner places on contractors, taxpayers, and rural households.
42 Field enumerators report that the electricity connection work may have sometimes been delayed due to expectations that bribes would be paid. See appendix A for additional details.
technical failures, theft, and replaced equipment.43 As a point of comparison, only 0.2 percent of transformers in California fail over a five year period, with the average blackout lasting a mere five hours.44 That said, there is no strong statistical evidence that recent blackouts affect demand: column 8 in table 2 includes interactions between the treatment variables and an indicator for whether any household in the community reported a recent blackout (over the past three days) at baseline, but finds no statistically significant effects.

Low demand may also be driven in part by household credit constraints, which are well documented in developing countries (De Mel, McKenzie, and Woodruff 2009; Karlan et al. 2014). In our context, concerns about the role of credit constraints may be exacerbated by the fact that we study a short-run subsidy offer for an electricity connection, redeemable over eight weeks, rather than a permanent change in the connection price across villages (which would provide households with more time to raise the necessary funds); long-term differential prices across villages were not politically feasible in the study setting.

In figure 5, we compare the experimental results to two sets of stated willingness to pay (WTP) results obtained in the baseline survey to shed some light on this issue. Stated WTP may better capture household valuation in the presence of credit constraints, although this is debatable, since they may also systematically overstate actual demand due to wishful thinking or social desirability bias (Hausman 2012).

Respondents were first asked whether they would accept a randomly assigned, hypothetical price ranging from $0 to $853 for a grid connection.45 Households were then asked whether they would accept the hypothetical offer if required to complete the payment in six weeks, a period chosen to be similar to the eight-week payment period in the experiment. We plot results in figure 5, where the first curve (long-dashed line, black squares) plots the results of the initial question, and the second curve (long-dashed line, grey squares) the follow-up question.

Stated demand is generally high.46 However, the demand curve falls dramatically when households are faced with a hypothetical time constraint, suggesting they are unable to pay (or

43 In appendix table B10, we provide a list of all the communities that experienced long-term blackouts.
44 Based on personal communications with Pacific Gas and Electric Company (PG&E) in December 2015.
45 Each of $114, $171, $227, $284, and $398 had a 16.7 percent chance of being drawn. Each of $0 and $853 had an 8.3 percent chance of being drawn. Nine households are excluded due to errors in administering the question.
46 For more details on the stated demand for electricity connections, see appendix table B11A, where we estimate the impact of the randomized offers on hypothetical and actual take-up, and appendix table B11B, which includes interactions between indicators for the hypothetical offers and key household covariates. In appendix figure B15, we plot hypothetical demand curves for households with and without bank accounts and high-quality walls.
borrow) the required funds on relatively short notice, an indication that credit constraints may be binding. An alternative interpretation is that the hypothetical question without time constraints generates exaggerated demand figures. At a price of $171, for example, stated demand is initially 57.6 percent but it drops to 27.2 percent with the time constraint.

Although the experimental demand curve is substantially lower than the stated demand without time limits, it more closely tracks the constrained stated demand: at $171, actual take-up in the experiment is 23.7 percent. The difference between the two contingent valuation results is consistent with the evidence on hypothetical bias (Murphy et al. 2005; Hausman 2012). However, the similarity between the constrained stated demand and experimental results suggest that augmenting survey questions to incorporate realistic timeframes and other contextual factors could help to elicit responses that more closely resemble revealed preference behavior.

We also regressed a binary variable indicating whether a household first accepted the hypothetical offer without the time constraint, but then declined the offer with the time constraint on a set of household covariates. Households with low-quality walls and respondents with no bank accounts are the most likely to switch their stated demand decision when faced with a pressing time constraint, consistent with the likely importance of credit constraints for these groups (see appendix table B11C).

In Section V.C above, we combined the experimental demand and cost curves and show that rural electrification may reduce social welfare. The stated preference results indicate that this outcome is likely to hold even if credit constraints were eased. For example, if we combine the cost curve with the stated demand for grid connections without time constraints, then households in the unobserved [0, 16.7] domain of the stated demand curve (i.e., those willing to pay at least $853) must be willing to pay $2,920 on average for consumer surplus to be larger than total construction costs. While this cannot be ruled out, it appears unlikely in a rural setting where annual per capita income is below $1,000 for most households.47

Furthermore, the ITT results in table 3, column 2 imply that medium-run impacts of electrification on economic (and other) outcomes are close to zero even when credit constraints are eliminated—by the high subsidy offer, which pushed the connection price to zero—providing further evidence that consumer surplus from grid connections is likely to be relatively low.

47 The area under the stated demand curve (without time constraints) is roughly $447 per household, under the assumption that the demand curve can be extended linearly in the [0, 16.7] range, intersecting the y-axis at $2,158.
Another way to address credit constraints is to offer financing plans for grid connections. In a second set of baseline stated WTP questions, each household was randomly assigned a hypothetical credit offer consisting of an upfront payment (ranging from $39.80 to $127.93), a monthly payment (from $11.84 to $17.22), and a contract length (either 24 or 36 months); we present the results in figure 5. Households were first asked whether they would accept the offer (short-dashed line, black circles) and then whether they would accept the offer if required to complete the upfront payment in six weeks (grey circles). We then plot take-up against the net present value of the credit offers based on an annualized 15 percent discount rate.

When households are offered financing, stated demand is not only high but also appears likely to be exaggerated, particularly when there are no time constraints to complete the upfront payments. For example, 52.7 percent of households stated that they would accept the $915.48 net present value offer, a package that consists of an upfront payment of $127.93 and monthly payments of $26.94 for 36 months. Eight weeks after accepting such an offer, a borrower will have paid $181, with an additional $915.92 due in the future. Yet stated demand for this option is twice as high as what we observe for the actual $171 time-limited, all-in price offered to medium subsidy arm households in the experiment. Moreover, the fact that stated take-up is very similar across hypothetical contract offers with quite divergent net present values casts some doubt on the reliability of these stated preference responses. The area under the stated demand curve in the case with financing and without time constraints is roughly $744 per household (under the same assumptions as above), which again falls short of average costs in our setting.

Figure 5 combines the four stated demand curves with the experimental demand and ATC curves. Visually, the only demand curves that appear to yield consumer surpluses that are potentially larger than total construction costs are the stated demand curves for grid connections with credit offers, which as we point out above, could be overstated.

Finally, low demand may indicate that even with subsidies, grid connections are simply too expensive for many of the households in our poor rural setting. After the experiment, we asked households that were connected in the low and medium subsidy arms to name any sacrifices they had made to complete their payments: 29 percent of households stated that they had forgone purchases of basic household consumption goods, and 19 percent stated that they

48 Results for a range of discount rates and net present values are presented in appendix table B12.
had not paid school fees. It seems likely that many households declined the subsidized offer due to binding budget constraints, in other words, poverty, rather than credit constraints alone.

C. Is rural electrification a socially desirable policy?

The leading interpretation of our empirical findings is that mass rural household electrification does not improve social welfare in Kenya, according to standard criteria. The cost of electrifying households appears to be at least four times higher than what households are willing and able to pay for these connections, and consumer surplus appears lower than total costs even with demand estimates that attempt to address credit constraints, or utilize subsequent electricity consumption patterns among connected households. While per household costs fall sharply with coverage, reflecting the economies of scale in the creation of local grid infrastructure, they remain far higher than demand, implying that social welfare falls with each additional subsidized connection. These results are also consistent with the evidence of negligible medium-run economic, health and educational impacts 18 months post-connection.

Yet, it is possible that these conclusions would change in settings with improved organizational performance by the electricity utility, or different levels of economic development. In table 5, we simulate the cost, consumer surplus, and net welfare per household using both the experimental approach presented in Section V.C and the alternative demand approach in Section V.E., under a range of assumptions about the underlying institutional and economic setting. In particular, we simulate the impact of “improving” the setting in five distinct ways: (a) allowing for household income growth of 3 percent per annum over 30 years (for the experimental approach) and electricity consumption growth of 10 percent per annum over 30 years (for the alternative approach); (b) alleviating credit constraints for grid connections; (c) eliminating transformer breakdowns; (d) eliminating the grid connection delays households face; and (e) eliminating all project construction cost leakage.49 We examine these individually, and then assess the effect on consumer surplus of combining them all in what we call the “ideal scenario”, which can be thought of as perhaps the best-case scenario for a low-income country considering mass rural residential electrification.

The first row of table 5 presents the base results from the above analysis, including the average connection cost (at 100 percent coverage) of $658, average consumer surplus from the

49 In appendix table B13, we present an additional adjustment accounting for the consumer surplus associated with households that were already connected at baseline, and note that this adjustment does not change our conclusions.
experimental approach of $147, and from the alternative approach of $147. As Kenya continues to develop, it is reasonable to assume that incomes and energy consumption will grow. To predict the effect of income growth on consumer surplus, we focus on the relative differences between households with low- and high-quality walls. For instance, the difference in experimental demand curves between these groups (figure 2, panel B) translates into a 2.2 percent annual growth rate of consumer surplus over ten years. Similarly, we estimate that the income difference between households with low- and high-quality walls translates into a 3 percent annual growth rate of income over ten years.\(^{50}\) Extrapolating these relationships over a 30-year period, consumer surplus per household reaches $285, thus increasing by $139 (row a).

We further refine the estimates of consumer surplus in the experimental approach by relaxing credit constraints, using the valuations from the stated WTP question without time constraints described above (row b).\(^{51}\) This more than triples consumer surplus, but is not enough to alter the conclusion that net welfare is likely to be negative. Similarly, while rapid electricity consumption growth in the coming 30 years (at 10 percent per year) leads to a large increase in consumer surplus in the alternative approach, it is not enough to offset the upfront cost (row a).

We next turn to simulated improvements in service provision that address transformer breakdowns (row c) and grid connection delays (row d), both of which somewhat increase consumer surplus, in the first case by increasing the number of days of service, and in the second case by assuming consumers get access to power sooner. As a rough approximation, we assume demand estimates scale linearly. Neither improvement on its own is sufficiently large enough to overturn the negative net welfare conclusion.

Finally, we simulate a reduction in total construction costs of 21.3 percent consistent with the degree of over-invoicing of construction poles documented in the data (row e). This leads to a sharp reduction in total costs under the assumption that this leakage is simply “waste”; leakage would far be less socially costly if viewed simply as a transfer from taxpayers to contractors (though would still incur some deadweight loss associated with the cost of raising funds).

\(^{50}\) As a proxy for the difference in income, we use food consumption per capita at endline. Note that we did not have a comprehensive measure of household income or consumption at baseline. Our baseline measure of monthly earnings—calculated as the sum of the respondent’s profits from businesses and self-employment; salary and benefits from employment; and agricultural sales for the household—is imperfect as it excludes earnings from other household members as well as subsistence agriculture.

\(^{51}\) Note that the alternative approach reflects consumer surplus from a grid connection largely absent credit constraints since it presumes that the household already has a connection.
The bottom row presents the ideal scenario in which all improvements are simultaneously implemented. The use of the preferred experimental estimates incorporating the easing of credit constraints and future income growth results in a net welfare gain of $148. The alternative estimates using electricity consumption (and assuming rapid future consumption growth) are more negative, with a net welfare loss of $144. The bottom line is that, even under optimistic assumptions about the reduction of corruption and improvements in electricity service quality, together with sustained economic growth, mass rural residential electrification may or may not be an attractive public investment, and even if it is, the magnitude of any gains may not be large.

There may also be additional benefits that are not captured by household WTP that could make this calculation appear more positive. First, as outlined in Section II.B, there may be spillovers from private grid connections, including any benefits that local unconnected households experience. Yet as mentioned in Section V.A above, we find no evidence of an interaction between the treatment indicators and the local baseline electrification rate. More importantly, there is no evidence of spillover impacts for local unconnected households along a range of economic, health and educational outcomes using endline survey data, as noted above.

Second, grid connections are long-lived but their long-term benefits may not be fully reflected in WTP if households have limited information about the future income or broader welfare benefits of electrification, or due to imperfect within-household altruism, for instance, if children stand to gain the most from indoor lighting in the evening (if it boosts learnings and future earning) but their parents do not fully understand these gains or incorporate them into decision-making. However, as noted above we do not find evidence for child test score gains in connected households in the medium-run.

Further, other factors may push up costs, making rural electrification less attractive. The per household connection cost would be substantially higher under a policy in which only a subset of households were connected to the grid (given the fixed costs of expanding the local low voltage network), rather than the mass connection case we assume in Table 5. Most importantly, access to modern energy could generate negative environmental externalities from higher CO₂ emissions and other forms of pollution.

Note that we cannot rule out the possibility that any negative effect of these spillovers on take-up due to free-riding is offset by a competing positive “keeping up with the neighbors” mechanism (Bernard and Torero 2015), or that greater learning about the private benefits of electricity and/or correlated household characteristics are present.
Moreover, we have considered neither the costs nor economic benefits of the initial investment to extend the high-voltage lines and install transformers in each sample community. Each installation required a large investment—the median cost per transformer is $21,820 (Lee et al. 2016)—and the welfare gains from powering the targeted public facilities, while potentially large, have not been measured. Our analysis treats these costs as sunk and focuses solely on the economics of electrifying “under grid” households, conditional on existing infrastructure. This is the policy-relevant question in our setting, given the expanding Kenya LMCP, but the cost of transformer installations would need to be considered in many other African and Asian settings.

VII. CONCLUSION

Over the past century, rural electrification has served as a key benchmark for economic development and social progress. The United States began its mass rural electrification program in the late-1930s, though it required two decades to reach 90 percent of households (Kitchens and Fishback 2015), China did so in the 1950’s, and South Africa launched its initiative in the 1990s. Today, access to energy has emerged as a major political issue in many low-income countries, as they aim to repeat the successes of earlier mass electrification programs.

However, the extent to which increases in energy access should be driven by investments in large-scale infrastructure, such as grid connections, or small-scale decentralized solutions, such as solar lanterns and solar home systems, remains contested. Does Africa’s energy future even lie with the grid? Although our findings suggest that household electrification may reduce social welfare, they do not necessarily imply that distributed solar systems are any more attractive than the grid, or that the patterns we identify are universal across time and space. In fact, the evidence—on inflated construction costs from leakage, and the pervasiveness of bureaucratic red tape, low grid reliability, and household credit constraints, all of which would suppress demand—suggests that the social welfare consequences of rural electrification are closely tied to organizational performance as well as institutions. We show that settings with better performance by the electricity utility—with fewer losses due to leakage and service that is more responsive to customers—may see shifts in both the cost curve and the demand side, and in such settings mass rural electrification may potentially be the socially optimal policy.

Another possibility is that mass electrification is indeed transformative and reshapes social, political, and economic interactions, perhaps in the long-run, but individual rural
households do not internalize these benefits, and they are neither reflected in private demand estimates nor observable in the medium-run follow-up data collected 18 months post-connection. Rural Kenyan households today may on average be too poor to consume meaningful amounts of electricity, but perhaps after another decade (or two) of sustained income growth they will be able to purchase the complementary appliances needed to fully exploit electrification’s promise.

Decisions to invest in large-scale energy infrastructure programs are associated with major opportunity costs and long-run consequences for future economic development and climate change, especially in Sub-Saharan Africa, where access to electricity lags the rest of the world. The findings of this study indicate that connecting rural households today is not necessarily an economically productive and high return activity in the world’s poorest countries. The social returns to investments in transportation, education, health, water, sanitation, or other sectors—indeed possibly including the electrification of industrial sites or urban areas—need to be compared to investments in rural electricity grid expansion to determine the appropriate sequencing of major public investments. Given the high stakes around these decisions, and the limited evidence base, there is a need for research in several areas, including generating further evidence on the impacts of increasing the supply of electricity, both in terms of access and reliability, to different types of consumers, such as commercial and industrial consumers; identifying the patterns and drivers of consumption demand, including for energy-efficient appliances; and determining routes to improving electric utility organizational performance.

REFERENCES

Korn, Andreas. 2014. “Consultancy Services for Development of Electricity Connection Policy and Draft Regulations.” *Fichtner Management Consulting*.

Figure 1—The electric utility as a natural monopoly

Notes: In panel A, the electric utility is a natural monopoly facing high fixed costs, decreasing marginal costs (MC_A), and decreasing average total costs (ATC_A). MC_A intersects demand at d'. At d', a government-subsidized mass electrification program would increase social welfare since consumer surplus (i.e., the area under the demand curve) is greater than total cost. Panel B illustrates an alternative scenario with higher fixed costs. In this case, consumer surplus is less than total cost at all quantities. A mass electrification program would not increase welfare unless there are, for instance, positive externalities from private grid connections. Panel C illustrates a scenario in which social demand (D') is sufficiently high for the ideal outcome to be full coverage, subsidized by the government.
Figure 2—Experimental evidence on the demand for rural electrification

Panel A compares the experimental results to the assumptions in an internal government report shared with our team in early-2015. Panel B plots the experimental results separately for households with low- and high-quality walls. Panel C plots the results separately for households in the lower and upper quartiles of monthly earnings, which is defined as the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household.

Notes: Panel A compares the experimental results to the assumptions in an internal government report shared with our team in early-2015. Panel B plots the experimental results separately for households with low- and high-quality walls. Panel C plots the results separately for households in the lower and upper quartiles of monthly earnings, which is defined as the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household.
Notes: Each point on the scatterplot represents the community-level, budgeted estimate of the average total cost per connection (ATC) at a specific level of community coverage. The light-grey curve is the fitted curve from the IV regression reported in appendix table A1B, column 3. The dark-grey curve corresponds to the predicted values from the nonlinear estimation of $ATC = b_0/Q + b_1 + b_2Q$.

Figure 3—Experimental evidence on the costs of rural electrification
Notes: Panel A combines the experimental demand curve from figure 2 with the nonlinear experimental ATC curve from figure 3. The marginal cost (MC) curve is generated by taking the derivative of the estimated total cost function. Panel B estimates the total cost of fully saturating a community at the cheapest ATC to be $55,713, based on average community density of 84.7 households. Similarly, we estimate the area under the demand curve to be $12,421. The area under the unobserved [0, 1.3] domain is estimated by projecting the [1.3, 7.1] demand curve through the intercept. Results are robust to alternative assumptions regarding demand in the unobserved [0, 1.3] domain (see appendix figure B10). Calculations suggest that a mass electrification program would result in a welfare loss of $43,292 per community. In order to justify such a program, discounted average future welfare gains of $511 in social and economic impacts would be required per household.
Figure 5—Stated willingness to pay for rural electrification, with and without time constraints and credit offers

Notes: This figure combines the experimental demand results (solid black line) with responses to the contingent valuation (CV) questions included in the baseline survey, as well as the nonlinear experimental ATC curve from figure 3. The CV questions include: (1) whether the household would accept a hypothetical offer (i.e., at a randomly assigned price) to connect to the grid (long-dashed line, black squares); (2) whether the household would accept the same hypothetical offer if required to complete the payment in six weeks (long-dashed line, grey squares); (3) whether the household would accept a hypothetical credit offer, consisting of an upfront payment (ranging from $39.80 to $79.60), a monthly payment (ranging from $11.84 to $17.22), and a contract length (either 24 or 36 months) (short-dashed line, black circles); and (4) whether the household would accept the same hypothetical offer if required to complete the deposit payment in six weeks (short-dashed line, grey circles. For the hypothetical credit offers, we assume a discount rate of 15 percent and plot the net present value of the credit offer and the take-up result. Additional details are provided in appendix table B12.
Table 1—Differences between electricity grid unconnected vs. grid connected households at baseline

<table>
<thead>
<tr>
<th>Panel A: Household head (respondent) characteristics</th>
<th>Unconnected (1)</th>
<th>Connected (2)</th>
<th>p-value of diff. (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (%)</td>
<td>62.9</td>
<td>58.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.3</td>
<td>55.8</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Senior citizen (%)</td>
<td>27.5</td>
<td>32.6</td>
<td>0.11</td>
</tr>
<tr>
<td>Attended secondary schooling (%)</td>
<td>13.3</td>
<td>45.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Married (%)</td>
<td>66.0</td>
<td>76.7</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Not a farmer (%)</td>
<td>22.5</td>
<td>39.5</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Employed (%)</td>
<td>36.1</td>
<td>47.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Basic political awareness (%)</td>
<td>11.4</td>
<td>36.7</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Has bank account (%)</td>
<td>18.3</td>
<td>60.9</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Monthly earnings (USD)</td>
<td>16.9</td>
<td>50.6</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Household characteristics</th>
<th>Unconnected (1)</th>
<th>Connected (2)</th>
<th>p-value of diff. (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of members</td>
<td>5.2</td>
<td>5.3</td>
<td>0.76</td>
</tr>
<tr>
<td>Youth members (age (\leq 18))</td>
<td>3.0</td>
<td>2.6</td>
<td>0.01</td>
</tr>
<tr>
<td>High-quality walls (%)</td>
<td>16.0</td>
<td>80.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Land (acres)</td>
<td>1.9</td>
<td>3.7</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Distance to transformer (m)</td>
<td>356.5</td>
<td>350.9</td>
<td>0.58</td>
</tr>
<tr>
<td>Monthly (non-charcoal) energy (USD)</td>
<td>5.5</td>
<td>15.4</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Panel C: Household assets			

Bednets	2.3	3.4	< 0.01
Sofa pieces	6.0	12.5	< 0.01
Chickens	7.0	14.3	< 0.01
Radios	0.35	0.62	< 0.01
Televisions	0.15	0.81	< 0.01

| Sample size | 2,289 | 215 | |

Notes: Columns 1 and 2 report sample means for households that were unconnected and connected at the time of the baseline survey. Column 3 reports \(p \)-value of the difference between the means. Basic political awareness indicator captures whether the household head was able to correctly identify the presidents of Tanzania, Uganda, and the United States. Monthly earnings (USD) includes the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household. In the 2013 census of all unconnected households, just 5 percent of rural households were connected to the grid. In our sample of respondents, we oversampled the number of connected households.
<table>
<thead>
<tr>
<th></th>
<th>High-quality walls</th>
<th>Monthly earnings (USD)</th>
<th>Attended secondary school</th>
<th>Baseline electrification rate</th>
<th>Baseline neighbors connected</th>
<th>Report of blackout in past 3 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1: Low subsidy—29% discount</td>
<td>5.8*** (1.4)</td>
<td>3.6** (1.5)</td>
<td>4.8*** (1.4)</td>
<td>5.6** (2.2)</td>
<td>4.8*** (1.9)</td>
<td>6.1** (1.2)</td>
</tr>
<tr>
<td>T2: Medium subsidy—57% discount</td>
<td>22.4*** (4.0)</td>
<td>21.3*** (4.4)</td>
<td>20.9*** (4.1)</td>
<td>19.8*** (3.8)</td>
<td>21.4*** (6.2)</td>
<td>21.4*** (2.2)</td>
</tr>
<tr>
<td>T3: High subsidy—100% discount</td>
<td>94.2*** (1.2)</td>
<td>95.6*** (1.2)</td>
<td>95.6*** (1.3)</td>
<td>95.2*** (1.3)</td>
<td>97.5*** (1.7)</td>
<td>96.1*** (1.3)</td>
</tr>
<tr>
<td>Interacted variable</td>
<td>0.3 (1.4)</td>
<td>-0.0 (0.0)</td>
<td>-1.0 (1.5)</td>
<td>0.1 (0.1)</td>
<td>0.1 (0.1)</td>
<td>-0.9 (1.3)</td>
</tr>
<tr>
<td>T1 × interacted variable</td>
<td>12.3** (6.1)</td>
<td>10.2 (7.0)</td>
<td>0.1 (0.2)</td>
<td>0.2 (0.2)</td>
<td>-0.2 (3.1)</td>
<td></td>
</tr>
<tr>
<td>T2 × interacted variable</td>
<td>8.8 (7.8)</td>
<td>0.1* (0.1)</td>
<td>19.5*** (4.6)</td>
<td>0.3 (1.2)</td>
<td>0.3 (0.2)</td>
<td>7.6 (7.8)</td>
</tr>
<tr>
<td>T3 × interacted variable</td>
<td>-5.5 -0.0 (3.9)</td>
<td>-4.3 (4.9)</td>
<td>-0.5* (0.3)</td>
<td>-0.2 (0.1)</td>
<td>-0.2 (2.8)</td>
<td></td>
</tr>
<tr>
<td>Household and community controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2289</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
</tr>
<tr>
<td>R²</td>
<td>0.68</td>
<td>0.69</td>
<td>0.69</td>
<td>0.70</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up, with a mean of 21.6. Take-up in the control group is 1.3. Robust standard errors clustered at the community level in parentheses. Pre-specified household controls include the age of the household head, indicators for whether the household respondent attended secondary school, is a senior citizen, is not primarily a farmer, is employed, and has a bank account, an indicator for whether the household has high-quality walls, and the number of chickens (a measure of assets) owned by the household. Pre-specified community controls include indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Monthly earnings (USD) includes the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household. Interacted variables in columns 7 and 8 are the proportion of neighbors (i.e., within 200 meters) connected to electricity and an indicator for whether any households in the community reported a recent blackout, respectively. Asterisks indicate coefficient statistical significance level (2-tailed): * \(P < 0.10; ** P < 0.05; *** P < 0.01. \)
Table 3—Estimated treatment effects on pre-specified and grouped outcomes

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>ITT</th>
<th>TOT</th>
<th>FDR q-val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Panel A: Treatment effects on pre-specified outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1. Grid connected (%)</td>
<td>5.6</td>
<td>89.7***</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>[23.0]</td>
<td>(1.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2. Monthly electricity spending (USD)</td>
<td>0.16</td>
<td>2.00***</td>
<td>2.20***</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>[1.29]</td>
<td>(0.18)</td>
<td>(0.20)</td>
<td></td>
</tr>
<tr>
<td>P3. Household employed or own business (%)</td>
<td>36.8</td>
<td>5.1</td>
<td>4.5</td>
<td>.416</td>
</tr>
<tr>
<td></td>
<td>[38.8]</td>
<td>(3.1)</td>
<td>(3.4)</td>
<td></td>
</tr>
<tr>
<td>P4. Total hours worked last week</td>
<td>50.9</td>
<td>-2.8*</td>
<td>-3.6**</td>
<td>.167</td>
</tr>
<tr>
<td></td>
<td>[32.8]</td>
<td>(1.5)</td>
<td>(1.7)</td>
<td></td>
</tr>
<tr>
<td>P5. Total asset value (USD)</td>
<td>888</td>
<td>109</td>
<td>110</td>
<td>.540</td>
</tr>
<tr>
<td></td>
<td>[851]</td>
<td>(108)</td>
<td>(120)</td>
<td></td>
</tr>
<tr>
<td>P6. Ann. consumption of major food items (USD)</td>
<td>117</td>
<td>-3</td>
<td>-5</td>
<td>.548</td>
</tr>
<tr>
<td></td>
<td>[92]</td>
<td>(6)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>P7. Recent health symptoms index</td>
<td>0</td>
<td>-0.03</td>
<td>-0.05</td>
<td>.548</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>P8. Normalized life satisfaction</td>
<td>0</td>
<td>0.12**</td>
<td>0.13*</td>
<td>.179</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>P9. Political and social awareness index</td>
<td>0</td>
<td>-0.03</td>
<td>-0.02</td>
<td>.731</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>P10. Average student test Z-score</td>
<td>0</td>
<td>-0.08</td>
<td>-0.10</td>
<td>.540</td>
</tr>
<tr>
<td></td>
<td>[0.99]</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>Panel B: Mean treatment effects on grouped outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1. Economic Index (P3 to P6 outcomes)</td>
<td>0</td>
<td>0.06</td>
<td>0.03</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.08)</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>G2. Non-Economic Index (P7 to P10 outcomes)</td>
<td>0</td>
<td>-0.01</td>
<td>-0.02</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.06)</td>
<td>(0.07)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: In panel A, we report treatment effects on ten pre-specified primary outcomes. Column 1 reports mean values for the control group, with standard deviations in brackets. Column 2 reports coefficients from separate ITT regressions in which the dependent variable (e.g., P1) is regressed on the high subsidy treatment indicator. The low and medium subsidy groups are excluded from these regressions. Sample sizes range from 1,397 to 1,461 for the P1 to P9 regressions and 960 for the P10 regression. Column 3 reports coefficients from separate TOT (IV) regressions in which household electrification status is instrumented with the three subsidy treatment indicators. Sample sizes range from 2,090 to 2,180 for the P1 to P9 regressions, and 1,432 for the P10 regression. All specifications include the relevant set of pre-specified household, student, and community covariates. Column 4 reports the FDR-adjusted q-values associated with the coefficient estimates in column 3. In panel B, we report mean treatment effects on outcomes grouped into an economic and non-economic index; these two groupings of outcomes were not pre-specified. Robust standard errors clustered at the community level in parentheses. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table 4—Alternative estimates of household (HH) consumer surplus based on monthly consumption

<table>
<thead>
<tr>
<th>Consumer demand elasticity</th>
<th>Monthly consumption</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 kWh</td>
<td>5 kWh</td>
</tr>
<tr>
<td></td>
<td>Newly connected HH in sample</td>
<td>+ 10% annual growth HH in sample</td>
</tr>
<tr>
<td>-0.45</td>
<td>49</td>
<td>110</td>
</tr>
<tr>
<td>-0.30</td>
<td>73</td>
<td>164</td>
</tr>
<tr>
<td>-0.15</td>
<td>147</td>
<td>329</td>
</tr>
</tbody>
</table>

Notes: Estimates of consumer surplus based on monthly electricity consumption levels ranging from 5 kWh to 75 kWh, and consumer demand elasticities ranging from -0.15 to -0.45. Common assumptions include a discount rate of 15%, an asset life of 30 years, a price of $0.12 per kWh, linear demand, zero consumer surplus from electricity without a grid connection, and a 188 day delay before obtaining an electricity connection (as illustrated in appendix figure A1). The 40 kWh level in column 3 corresponds to median consumption level reported by connected households at baseline. See appendix table B7 for details on the benchmark electricity consumption levels.
Table 5—Predicting cost (C), consumer surplus (CS), and net welfare (NW) per household using different approaches and assumptions

<table>
<thead>
<tr>
<th></th>
<th>Experimental approach</th>
<th>Alternative approach</th>
<th>Key assumption(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>CS</td>
<td>NW</td>
</tr>
<tr>
<td>Main estimates</td>
<td>658</td>
<td>147</td>
<td>-511</td>
</tr>
<tr>
<td>a) Income growth</td>
<td>–</td>
<td>+139</td>
<td>–</td>
</tr>
<tr>
<td>(experimental approach)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>–</td>
<td>–</td>
<td>+182</td>
</tr>
<tr>
<td>growth (alternative approach)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) No credit constraints for grid connections</td>
<td>–</td>
<td>+301</td>
<td>–</td>
</tr>
<tr>
<td>c) No transformer breakdowns</td>
<td>–</td>
<td>+33</td>
<td>+19</td>
</tr>
<tr>
<td>d) No grid connection delays</td>
<td>–</td>
<td>+46</td>
<td>+26</td>
</tr>
<tr>
<td>e) No construction cost leakage</td>
<td>-140</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ideal scenario</td>
<td>518</td>
<td>665</td>
<td>148</td>
</tr>
</tbody>
</table>

Notes: Main estimates of C, CS, and NW correspond to figure 4, panel B (for the experimental approach), and table 4, column 1, row 3 (for the alternative approach). Appendix table B13 includes an additional row to account for the consumer surplus associated with baseline connected households.
Appendix A

I. THEORETICAL FRAMEWORK

A representative household will decide to connect to the electricity grid if the benefits from future electricity consumption minus the cost of that consumption exceed the cost of the connection. We represent those tradeoffs formally with the following equation, which reflects the household utility as a function of grid connection status. The indicator \(G \) equals one if the household connects and zero if not:

\[
V(G) = \begin{cases}
E\left[\sum_{t=1}^{T} \beta^t (\text{Max}_{d_t} u(y(d_t), x(d_t)) - p_t d_t) \right] - CP, & \text{if } G = 1 \\
0, & \text{if } G = 0
\end{cases}
\]

(1)

Discounted expected future household utility is denoted by \(V \). For simplicity, we normalize household utility in the absence of a grid connection to zero \((G = 0) \). If a household connects to the grid in period \(t = 0 \), it must pay the connection price \(CP \geq 0 \). In each period \(t = 1 \) to \(T \) (i.e., the lifetime of a connection), the household chooses a level of electricity consumption \(d_t \) to maximize the difference between the per-period utility benefits of electricity \(u \), and the cost \(p_t d_t \). Under standard assumptions, household electricity demand is a decreasing function of the contemporaneous electricity price \(p_t \), which we assume is linear in consumption for simplicity. Note that we are ignoring dynamic considerations in per-period electricity consumption decisions, although this could be incorporated with more notation. We are also assuming that the household will enjoy the connection for its whole lifetime. Equation 1 demonstrates that household expectations regarding future electricity prices and future consumption factor into the upfront grid connection decision problem.

Households benefit from electricity both in terms of economic outcomes (denoted \(y \)) and non-economic outcomes \((x) \), both of which are presumed to be weakly increasing in consumption \(d_t \). Households may have poor information regarding the magnitude of these future benefits if they have not experienced an electric connection themselves. \(\beta < 1 \) is the time discount factor.

The expression in equation 1 is equal to private consumer surplus from an electricity connection. It also equals the social welfare benefits of electricity connections under additional assumptions. Specifically, the sum of consumer surplus across households is equivalent to the net
social welfare benefit if: the cost of a unit of electricity once connected is equal to the marginal cost of supply; there is a perfectly elastic supply curve; and there are no spillover effects, externalities or additional costs from either electricity connections or consumption.

It is useful to extend the expression in equation 1 to consider some of these factors, namely, the possibility that there are spillovers, external effects or additional costs. In the real-world application we study in Kenya, the connection price faced by households (CP in the above) was heavily subsidized in all cases, and thus a household’s decision to connect imposes a further social cost of \(C_0 \geq 0 \), which captures the subsidy the household receives. Additional electricity consumption may also impose negative externalities on others to the extent that the marginal cost of supply does not incorporate broader social costs of electricity generation, for example pollution from electricity generation. This cost per unit of electricity is denoted \(s_t \geq 0 \). \(^1\) Greater energy consumption could also generate positive externalities for other households, denoted \(b \), to the extent that there are agglomeration economies, economies of scale, direct spillovers (e.g., neighbors visit each other to watch TV), or other forms of production complementarities across households. \(b \) could also capture within-family benefits, for example, if parents make decisions about grid connections without fully internalizing the future benefits to their children’s earning capacities.

Taking these factors into account, the social welfare that results from a household's decision to connect to the electricity grid can be represented as follows:

\[
SW(G) = \begin{cases}
E[\sum_{t=1}^{T} \beta^t (u(y(d_t), x(d_t)) + b(d_t) - (p_t + s_t)d_t)] - (CP + C_0), & \text{if } G = 1 \\
0, & \text{if } G = 0
\end{cases}
\]

(2)

The connection decision \(G \) and the per-period electricity consumption levels \((d_t) \) here are determined by the household’s private optimization problem from equation 1, and thus may not be socially optimal in the presence of the additional costs and spillover terms.

The terms in this expression are closely linked to the empirical estimates in the current study. The estimated revealed preference of household willingness to pay for an electricity connection (in Section V.A) captures whether households expect that the price of a connection

\(^1\) Note that we are assuming the firm providing electricity faces a zero-profit constraint, for instance, because it is regulated. In other words, we are assuming that \(\sum_{i} \sum_{d_t} (p(id) - mc(d_id)) + \sum_{i}(CP + C_0) - F = 0 \), where \(mc() \) is the firm’s marginal cost function, \(F \) represent its fixed costs and \(\sum_{i}() \) sums over the firm’s customers, \(i \). \(C_0 \) reflects transfers from the government (or multilateral development banks). This assumption simplifies the welfare calculations, and the firm is not the focus of our analysis.
(CP) is less than the discounted future stream of utility benefits minus the expected costs of electricity consumption, as represented by the first expression in equation 1. The alternative measures of surplus from grid connections using the application of Dubin and McFadden’s (1984) discrete-continuous model (in Section V.E) utilizes per-period household electricity consumption levels combined with assumptions regarding the elasticity of consumer demand to derive the net present value of consumer surplus. This is essentially measuring \(u(\cdot) – pd \) each period and taking the discounted sum over the assumed lifetime of the connection.

In Section V.D, we present estimates of the medium-run impacts of a grid connection along both economic (\(y \)) and non-economic (\(x \)) dimensions. In addition, we present estimates of local spillovers (\(b \)) in the appendix. Note that the spillover estimates we present would not capture any benefits that accrue to households beyond the contemporaneous village-level impacts. Finally, the cost estimates in Section V.B provide estimates of \(CP + C_0 \).

II. EXPERIMENTAL DESIGN AND DATA

A. Sample selection

In August 2013, REA representatives in Western Kenya provided us with a master list of 241 unique REA projects, consisting of roughly 370 individual transformers spread across the ten constituencies of Busia and Siaya. Since REA had been the main driver of rural electrification, this master list reflected the universe of rural communities in which there was a possibility of connecting to the grid. Each project featured the electrification of a major public facility (market, secondary school, or health clinic), and involved a different combination of high and low voltage lines and transformers. Projects that were either too recent, or classified as “not commissioned,” were not included in the master list. Since the primary objective was to estimate local electrification rates, projects that were funded after February 2013 were excluded to ensure that households in sample communities had had ample opportunity to connect to the grid.

In September 2013, we randomly selected 150 transformers using the following procedure: 1) in each constituency, individual transformers were listed in a random order, 2) the transformer with the highest ranking in each constituency was then selected into the study, and 3) any remaining transformers located less than 1.6 km (or 1 mile) from, or belonging to the same REA project, as one of the selected transformers, were then dropped from the remaining list. We repeated this procedure, cycling through all ten constituencies, until we were left with a sample of
150 transformers for which: 1) the distance between any two transformers was at least 1.6 km, and 2) each transformer represented a unique REA project. In the final sample, there are 85 and 65 transformers in Busia and Siaya counties, respectively, with the number of transformers in each of the ten constituencies ranging from 8 to 23. This variation can be attributed to differences across constituencies in the number of eligible projects. In Budalangi constituency, for example, all of the eight eligible projects were included in the sample. As a result of this community selection procedure, the sample is broadly representative of the types of rural communities targeted by REA in rural Western Kenya.

B. Experimental design and implementation

1. Households were identified at the level of the residential compound, which is a unit known locally as a *boma*. In Western Kenya, it is common for related families to live in different households within the same compound.

2. Most of the baseline surveys were conducted between February and May 2014. However, 3.1 percent of surveys were administered between June and August 2014 due to scheduling conflicts and delays.

3. Since electrification rates were so low, the sample of connected households covers only 102 transformer communities; 17 communities did not have any connected households at the time of census, and we were unable to enroll any connected households in the remaining 31 communities, for instance, if there was a single connected compound in a village and the residents were not present on the day of the baseline survey.

4. For the stratification variable market status, we used a binary variable indicating whether the total number of businesses in the community was strictly greater than the community-level mean across the entire sample.

5. To prevent transfers of the connection offer between households, the offer was only valid for the primary residential structure, identified by the GPS coordinates captured during the baseline survey. All treatment households were given a reminder phone call two weeks prior to the expiry date of the offer. At the end of the eight-week period, enumerators visited each household to collect copies of bank receipts to verify that payments had been made.
C. Data

The analysis combines a variety of survey, experimental, and administrative data, collected and compiled between August 2013 and December 2016. The datasets include:

1. **Community characteristics data** (N=150) covering all 150 transformer communities in our sample, including estimates of community population (i.e., within 600 meters of a central transformer), baseline electrification rates, year of community electrification (i.e., transformer installation), distance to REA warehouse, and average land gradient. (Following Dinkelman (2011), gradient data is from the 90-meter Shuttle Radar Topography Mission (SRTM) Global Digital Elevation Model (www.landcover.org). Gradient is measured in degrees from 0 (flat) to 90 (vertical).)

2. **Baseline household survey data** (N=2,504) consisting of respondent and household characteristics, living standards, energy consumption, and stated demand (contingent valuation) for an electricity connection.

3. **Experimental demand data** (N=2,289) consisting of take-up decisions for the 1,139 treatment households (collected between May and August 2014) and 1,150 control households (collected between January and March 2015) in our sample.

4. **Administrative cost data** (N=77) supplied by REA including both the budgeted and invoiced costs for each project. For each community in which the project delivered an electricity connection (n=62), we received data on the number of poles and service lines, length of LV lines, and design, labor and transportation costs. Using these data, we calculate the average total cost per household for each community. In addition, REA provided us with cost estimates for higher levels of coverage (i.e., at 60, 80, and 100 percent of the community connected) for a subset of the high subsidy arm communities (n=15). (REA followed the same costing methodology, e.g., the same personnel visited the field sites to design the LV network and estimate the costs, applied to the communities in which we delivered an electricity connection, to ensure comparability between budgeted estimates for “sample” and “designed” communities.) Combining the actual sample and designed communities data (N=77) enables us to trace out the cost curve at all coverage levels.
5. *Endline household survey data* (N=3,770) consisting of respondent and household characteristics, living standards, energy consumption, and other variables, roughly 18 months after treatment households were connected.

6. *Children’s test score data* (N=2,317) consisting of standardized scores on a short (15 minute) English and Math test administered by the field enumerators.

III. ADDITIONAL RESULTS

A. Estimating the economies of scale in electricity grid extension

An immediate consequence of the downward-sloping demand curve estimated in Section V.A is that the randomized price offers generate exogenous variation in the proportion of households in a community that are connected as part of the same local construction project. This novel design feature allows us to experimentally assess the economies of scale in electricity grid extension.

In appendix tables A1A and A1B, we report the results of estimating the impact of the number of connections (M_c) and a quadratic term (M_c^2)—or alternatively, the impact of the community coverage (Q_c) and a quadratic term (Q_c^2)—on the average total cost per connection (“ATC”) (Γ_c). Community coverage is defined as the proportion of initially unconnected households in the community that become connected. For example, for the number of connections, we estimate the following regression:

$$\Gamma_c = \pi_0 + \pi_1 M_c + \pi_2 M_c^2 + V_c' \mu + \eta_c$$ \hspace{1cm} (2)

In the pre-analysis plan, we hypothesized that the ATC would fall with more connections (i.e. $\pi_1 < 0$), but at a diminishing rate (i.e. $\pi_2 > 0$). We test this using two samples. The first sample consists of the 62 treatment communities in which we observed non-zero demand. The second sample includes the additional 15 sites that were designed and budgeted for us by REA at even higher coverage levels (up to 100 percent). We report the results for the “sample” communities in appendix table A1A, and “sample and designed” communities in appendix table A1B. In certain columns, we report the coefficients for the community-level characteristics specified in the pre-analysis plan, including for instance, the round-trip distance between community c and the regional REA warehouse in Kisumu (a determinant of project transport costs), and the average land gradient for each 600-meter radius transformer community. In
appendix table A1A, columns 5 to 8, we report the results of an instrumental variables specification in which the experimental subsidy terms, T_e^M and T_e^H, serve as instruments for either the number of connections (M_c and M_c^2) or community coverage (Q_c and Q_c^2).

The coefficients on M and M^2 are both statistically significant and large with the hypothesized signs, and are stable across the OLS and IV specifications. Within the domain of the first sample (appendix table A1A), which ranges from 1 to 16 connections per community, increasing project scale by a single household decreases the ATC by roughly $500, and costs reach a minimum at approximately 11 households. Within the domain of the second sample (appendix table A1B), which includes the designed communities and ranges from 1 to 85 connections, the estimated π_1 drops to roughly $84 and costs reach a minimum at approximately 55 households.

In appendix table A1B, column 3, we estimate the ATC as a quadratic function of community coverage, Q_c. We carry out this transformation (focusing on Q_c instead of M_c) because estimating the ATC in terms of community coverage will allow for a direct comparison of the demand curve to the cost curves in Section V.C. In figure 3, panel A we plot the fitted curve from this regression on a scatterplot of ATC and community coverage.

IV. EXTERNAL VALIDITY

A. Excess costs from leakage

In addition to being associated with wasted public resources, if the planned number of poles reflects accepted engineering standards (i.e., poles are roughly 50 meters apart, etc.), using fewer poles might lead to substandard service quality and even safety risks. For instance, local households may face greater injury risk due to sagging power lines between poles that are spaced too far apart, and the poles could be at greater risk of falling over. It is possible, however, that REA’s designs included extra poles, perhaps anticipating that contractors would not use them all.

We separate costs into three categories: (1) *Local network costs*, which consist of low- and high-voltage cables, wooden poles and the various components required to attach cables to poles, (2) *Labor and transport costs*, which include the cost of network design, installation, and transportation, and (3) *Service lines*, which are the drop-down cables connecting the homes. In

2 In our pre-analysis plan, we specified an IV regression that included three instrumented variables, M_c, M_c^2, and M_c^3. We dropped the third term because we were unable to acquire cost estimates for the control communities, which limited our sample to the treatment communities, and effectively limited our set of instruments to T_e^M and T_e^H.

A-8
Including them would not alter the main conclusions since they are the same for all connected households and a small share of total costs.

B. Factors contributing to lower demand for electricity connections

In our sample, households waited a staggering 188 days, after submitting all their paperwork, before they began receiving electricity. Appendix figure A1 summarizes the time required to complete each major phase associated with obtaining a rural household grid connection in Kenya. The timeline is presented in two panels; panel A reflects the experience of households, and panel B reflects supplier performance. (In appendix table A2, we document the full list of reasons for the delays encountered during each phase.) From the household’s perspective, we identified three phases in the connection process: Payment (A1), Wiring (which also includes submitting a metering application to Kenya Power) (A2), and Waiting (A3).

Unexpected delays occurred during the wiring phase, which on average took 24 days, for two main reasons. First, households applying to Kenya Power are required to have (1) a National Identity Card (NIC), (2) a KRA Personal Identification Number (PIN) certificate, and (3) a completed Kenya Power application form. Forty-two percent of household heads requesting a connection did not already have a KRA PIN certificate, which could only be generated on the KRA website. Since most rural households do not regularly access the Internet, project enumerators provided registration assistance for 96.6 percent of the households lacking KRA PINs. At the time of the experiment, KRA PIN registration services were typically offered at local Internet cafes at a cost of $5.69 (500 KES). Second, households connecting to the grid are required to have certificates that the wiring is safe. The ready-board manufacturer provided wiring certificates that needed to be signed by contractors after installation. We encountered delays when the spelling of the name on the certificate did not precisely match its spelling on the NIC or KRA PIN certificate.

From the supplier’s perspective, we identified four phases: Design (B1), Contracting (B2), Construction (B3), and Metering (B4). REA completed the design and contracting work, independent contractors (hired by REA) completed the physical construction, and Kenya Power educated households on issues relating to safety, and installed and activated the prepaid meters. The longest delays occurred during the design phase, which took an average of 57 days, and the metering phase, which took 68 days on average. The design phase was adversely affected by
competing priorities at REA. In June 2014, the government announced a program to provide free laptops for all Primary Standard 1 students nationwide. Since roughly half of Kenya’s primary schools were unelectrified at the time of the announcement, there was political pressure on REA to prioritize connecting the remaining unelectrified primary schools during the 2014-15 fiscal year. As a result, fewer REA designers were available to focus on other projects, including ours.

There were severe delays during the metering phase due to unexpected issues at Kenya Power, such as insufficient materials (i.e., reported shortages in prepaid meters), lost meter applications, and competing priorities for Kenya Power staff. Additional problems slowed the process as well. For several months, there was a general shortage of construction materials and metering hardware at REA storehouses. In the more remote communities, heavy rains created impassable roads. Difficulties in obtaining wayleaves (i.e., permission to pass electricity lines through other private properties) required redrawing network designs, additional trips to the storehouse, and further negotiations with contractors. In some cases, households that had initially declined a “ready board” changed their minds; in an unfortunate case lightning struck, damaging a household’s electrical equipment; and so on. While these problems increased completion times, their negative effects were partially offset by the weekly and persistent reminders sent to REA and Kenya Power by our project staff, meaning the situation for other rural Kenyans could be even worse.
Figure A1—Timeline of the rural electrification process

Panel A: Household

- A1. Payment: 56 (0)
- A2. Wiring: 24 (25)
- A3. Waiting period: 188 (79)

Panel B: Supplier

- B1. Design: 57 (17)
- B3. Construction: 40 (27)

Notes: Panel A summarizes the rural electrification process from the standpoint of the household, divided into three key phases. Panel B summarizes the process from the standpoint of the supplier, divided into four key phases. The numbers to the right of each bar report the average number of days required to complete each phase (standard deviations in parentheses). Households were first given 56 days (8 weeks) to complete their payments. Afterwards, it took on average 212 days (7 months) for households to be metered and electricity to flow to the household. Appendix table A2 lists specific issues that created delays during each phase of the process.
Table A1A—Impact of scale on average total cost (ATC) per household connection, sample communities

<table>
<thead>
<tr>
<th></th>
<th>Sample—OLS</th>
<th>Sample—IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Number of connections (M)</td>
<td>-472.4***</td>
<td>-510.1***</td>
</tr>
<tr>
<td></td>
<td>(88.6)</td>
<td>(88.0)</td>
</tr>
<tr>
<td></td>
<td>-551.6***</td>
<td>-492.5**</td>
</tr>
<tr>
<td></td>
<td>(205.7)</td>
<td>(199.0)</td>
</tr>
<tr>
<td>M²</td>
<td>20.4***</td>
<td>23.2***</td>
</tr>
<tr>
<td></td>
<td>(5.3)</td>
<td>(5.3)</td>
</tr>
<tr>
<td>Community coverage (Q)</td>
<td>-177.0***</td>
<td>-171.8***</td>
</tr>
<tr>
<td></td>
<td>(27.5)</td>
<td>(27.6)</td>
</tr>
<tr>
<td></td>
<td>-409.7</td>
<td>-335.0</td>
</tr>
<tr>
<td></td>
<td>(293.8)</td>
<td>(216.9)</td>
</tr>
<tr>
<td>Q²</td>
<td>3.2***</td>
<td>3.0***</td>
</tr>
<tr>
<td></td>
<td>(0.8)</td>
<td>(0.8)</td>
</tr>
<tr>
<td>Busia=1</td>
<td>583.8*</td>
<td>470.8</td>
</tr>
<tr>
<td></td>
<td>(293.4)</td>
<td>(334.5)</td>
</tr>
<tr>
<td></td>
<td>574.0*</td>
<td>966.9</td>
</tr>
<tr>
<td></td>
<td>(302.5)</td>
<td>(802.0)</td>
</tr>
<tr>
<td>Market transformer=1</td>
<td>-342.1</td>
<td>-190.8</td>
</tr>
<tr>
<td></td>
<td>(211.4)</td>
<td>(236.8)</td>
</tr>
<tr>
<td></td>
<td>-332.9</td>
<td>-375.9</td>
</tr>
<tr>
<td></td>
<td>(224.2)</td>
<td>(436.9)</td>
</tr>
<tr>
<td>Transformer funded early on=1</td>
<td>85.2</td>
<td>114.9</td>
</tr>
<tr>
<td></td>
<td>(181.8)</td>
<td>(208.2)</td>
</tr>
<tr>
<td></td>
<td>85.9</td>
<td>-136.4</td>
</tr>
<tr>
<td></td>
<td>(183.5)</td>
<td>(460.0)</td>
</tr>
<tr>
<td>Community electrification rate</td>
<td>3.4</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>(18.2)</td>
<td>(20.5)</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>(18.7)</td>
<td>(32.7)</td>
</tr>
<tr>
<td>Population</td>
<td>-0.3</td>
<td>-1.4**</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td>(0.6)</td>
</tr>
<tr>
<td></td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>Round-trip distance to REA (km)</td>
<td>-2.5</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>(3.7)</td>
<td>(4.2)</td>
</tr>
<tr>
<td></td>
<td>-2.4</td>
<td>-6.9</td>
</tr>
<tr>
<td></td>
<td>(4.0)</td>
<td>(10.3)</td>
</tr>
<tr>
<td>Land gradient</td>
<td>-153.2*</td>
<td>-136.5</td>
</tr>
<tr>
<td></td>
<td>(80.3)</td>
<td>(91.7)</td>
</tr>
<tr>
<td></td>
<td>-152.3*</td>
<td>-107.6</td>
</tr>
<tr>
<td></td>
<td>(81.0)</td>
<td>(154.4)</td>
</tr>
<tr>
<td>Mean of dep. variable (USD)</td>
<td>1813</td>
<td>1813</td>
</tr>
<tr>
<td></td>
<td>1813</td>
<td>1813</td>
</tr>
<tr>
<td>Observations</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>R²</td>
<td>0.63</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the budgeted average total cost per connection (ATC) in USD. Community coverage (Q) is the proportion of unconnected households that are connected (multiplied by 100). Since there was no takeup in 13 communities, there are 62 observations. In columns 5 to 8, polynomials for the number of connections (M and M²) and community coverage (Q and Q²) are instrumented with T⁻¹ and T⁻². The specifications in columns 2, 4, 6, and 8 include (and report coefficients for) the community-level covariates specified in the pre-analysis plan. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table A1B—Impact of scale on average total cost (ATC) per household connection, sample and designed communities

<table>
<thead>
<tr>
<th></th>
<th>Sample & Designed—OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Number of connections (M)</td>
<td>-87.8***</td>
</tr>
<tr>
<td></td>
<td>(15.1)</td>
</tr>
<tr>
<td>M(^2)</td>
<td>0.8***</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
</tr>
<tr>
<td>Community coverage (Q)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Q(^2)</td>
<td>0.8***</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
</tr>
<tr>
<td>Busia=1</td>
<td>247.7</td>
</tr>
<tr>
<td></td>
<td>(388.8)</td>
</tr>
<tr>
<td>Market transformer=1</td>
<td>-148.8</td>
</tr>
<tr>
<td></td>
<td>(195.4)</td>
</tr>
<tr>
<td>Transformer funded early on=1</td>
<td>109.3</td>
</tr>
<tr>
<td></td>
<td>(218.6)</td>
</tr>
<tr>
<td>Community electrification rate</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>(15.4)</td>
</tr>
<tr>
<td>Community population</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td>(0.7)</td>
</tr>
<tr>
<td>Round-trip distance to REA (km)</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>(3.6)</td>
</tr>
<tr>
<td>Land gradient</td>
<td>-173.9***</td>
</tr>
<tr>
<td></td>
<td>(58.1)</td>
</tr>
<tr>
<td>Mean of dep. variable (USD)</td>
<td>1633</td>
</tr>
<tr>
<td>Observations</td>
<td>77</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the budgeted average total cost per connection (ATC) in USD. Community coverage (Q) is the proportion of unconnected households that are connected (multiplied by 100). The sample is expanded to include the 15 additional designed communities. Robust standard errors are clustered at the community level. The specifications in columns 2 and 4 include (and report coefficients for) the community-level covariates specified in the pre-analysis plan. Asterisks indicate coefficient statistical significance level (2-tailed): * \(P < 0.10 \); ** \(P < 0.05 \); *** \(P < 0.01 \).
<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
<th>Reasons for unexpected delays</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Wiring</td>
<td>• In order to begin using electricity, households are required to have a valid meter and a certificate of wiring safety. A large proportion of households were not able to register for a meter because they lacked a PIN (Personal Identification Number) certificate from the Kenya Revenue Authority. In our sample, 42 percent of households applying for electricity needed assistance in applying for a PIN certificate.</td>
</tr>
</tbody>
</table>
| B1 | Design | • Competing priorities at REA due to the 2014/15 nationwide initiative to connect primary schools to the national grid. This resulted in a persistent shortage of REA designers and planners.
• Low motivation to perform design duties. In addition, since REA designers were required to physically visit each community, there were numerous challenges in scheduling field visits. |
| B2 | Contracting | • Competing priorities (described above) delayed the bureaucratic paperwork required to prepare contracts.
• REA staff members had strong preferences to assign certain projects to specific contractors. This resulted in delays because REA wanted to wait until specific contractors were free to take on new projects. |
| B3 | Construction| • Insufficient materials (e.g., poles, cables) requiring site revisits.
• Poor weather (i.e., rainy conditions) made roads impassable and digging holes (for electricity poles) impossible.
• Issues in securing wayleaves (i.e., right of ways) to pass through neighboring properties.
• Low-quality construction work that needed to be fixed.
• Missing materials.
• Faulty transformers requiring contractors to revisit sites to complete the final step of the process (e.g., connecting the new low-voltage network to the existing line).
• Incorrect households were connected to the network, requiring site revisits.
• Contractor issues installing “ready-boards” due to lack of experience. |
| B4 | Metering | • Insufficient materials (e.g., prepaid meters, cables) contributed to lengthy delays at Kenya Power.
• Lost meter application forms at local Kenya Power offices.
• Changes in internal Kenya Power processes requiring applications to be approved in Nairobi as well as local offices in Siaya, Kisumu, and Busia.
• Unexpected requests by local Kenya Power representatives for additional documents (e.g., photocopies of payment receipts).
• Local Kenya Power representatives unable to perform metering duties due to competing priorities.
• Scheduling difficulties due to the necessity for Kenya Power to make multiple trips to remote village sites, which increased the costs (metering costs are not documented in our cost estimates). |

Notes: Each phase of the construction process corresponds to the timeline bar illustrated in appendix figure A1.
Appendix B

This appendix contains additional figures and tables referenced in the main text.
Figure B1—150 sample communities in Busia and Siaya counties in Kenya

Notes: The final sample of 150 communities includes 85 and 65 transformers in Busia and Siaya counties, respectively.
Figure B2—Example of a “transformer community” of typical density

Notes: The white circle labeled T in the center identifies the location of the REA transformer. The larger white outline demarcates the 600-meter radius boundary. Green circles represent unconnected households; purple squares represent unconnected businesses; and blue triangles represent unconnected public facilities. Yellow circles, squares, and triangles indicate households, businesses, and public facilities with visible electricity connections, respectively. Household markers are scaled by household size, with the largest indicating households with more than ten members, and the smallest indicating single-member households. In each community, roughly 15 households were randomly sampled and enrolled into the study. The average density of a transformer community is 84.7 households per community and the average minimum distance between buildings (i.e., households, businesses, or public facilities) is 52.8 meters. In the illustrated community, there are 85 households.
Notes: The 150 transformer communities in our sample covered 62.2 percent of the universe of REA projects in Busia and Siaya counties in August 2013. See appendix A for details on the community selection procedure. At baseline, roughly 15 unconnected households in each community were randomly sampled and enrolled into the study. Census data on the universe of unconnected households were used as a sampling frame. Baseline surveys were also administered to a random sample of 215 households already connected at baseline. Communities were randomly assigned into three treatment arms and a control group. Treatment offers were valid for eight weeks. At endline, roughly nine additional households in each community were randomly sampled and enrolled into the study in order to measure local spillovers. Census data on the universe of unconnected households were again used as a sampling frame.
Figure B4—Example of REA offer letter for a subsidized household electricity connection

Notes: Each offer letter was signed and guaranteed by REA management. Project field staff members visited each treatment community and explained the details of the offer to a representative from each household in a community meeting. The meeting was held to give community members a chance to ask questions.
Notes: Treatment households received an opportunity to install a certified household wiring solution in their homes at no additional cost. 88.5 percent of the households connected in the experiment accepted this offer, while 11.5 percent provided their own wiring. Each ready-board, valued at roughly $34 per unit, featured a single light bulb socket, two power outlets, and two miniature circuit breakers. The unit is first mounted onto a wall and the electricity service line is directly connected to the back. The hardware was designed and produced by Power Technics, an electronic supplies manufacturer in Nairobi.
Figure B6—Stated reasons why households remain unconnected to electricity at baseline

Notes: Based on the responses of 2,289 unconnected households during the baseline survey round.
Figure B7—Timeline of project milestones and connection price-related news reports over the period of study

- **April 2013**: Government rejects KPLC proposal to increase connection price from $398 to $796.
- **May 2013**: KPLC freezes new connections in rural areas citing high construction costs.
- **June 2013**: President Obama launches *Power Africa*.
- **August 2013**: Government orders KPLC to reinstate $398 price, and offers company a temporary subsidy to cover any excess construction costs.
- **December 2013**: *Daily Nation* reports that government is seeking to borrow $600 million from AfDB, World Bank, and other lenders to subsidize rural electrification, which will allow households to continue paying $398.
- **February 2014**: First baseline survey
- **May 2014**: First subsidy offer
- **October 2014**: Last subsidy expiry
- **August 2014**: Last baseline survey
- **October 2014**: First household connected
- **July 2014**: Registered pre-analysis plan
- **September 2014**: Reports of further talks between government and AfDB regarding major loan. *Daily Nation* is the first to mention the *Last Mile Connectivity Project (LMCP)*, though limited details are provided. *Business Daily* mentions the possibility of a lower connection price in the future.
- **October 2014**: An internal report, commissioned by the government, identifies last-mile connections for “under grid” households as the most promising strategy to reach universal connectivity.

(Figure continued on next page)
Notes: Sources for news reports related to the grid connection price include *Daily Nation*, Kenya’s leading national newspaper, and *Business Daily*.
Figure B8—Experimental evidence on the demand for rural electrification

Notes: The experimental results are compared with two sets of initial assumptions based on (i) our pre-analysis plan (see appendix C), and (ii) an internal government report shared with our team in early-2015.
Figure B9A—Experimental evidence on the costs of rural electrification

Panel A

Panel B

Notes: Panel A displays predicted values from the nonlinear estimation of $ATC = \frac{b_0}{Q} + b_1 + b_2Q$ using only the sample communities data (n=62). Panel B, which reproduces the nonlinear ATC curve in figure 3, panel B, uses both the sample communities and design communities data (N=77).
Figure B9B—Experimental estimates of a natural monopoly: Alternative functional forms

Panel A

Panel B

Panel C

Notes: Panel A reproduces figure 4, panel A. In panel B, we estimate an average total cost curve with constant variable costs. In Panel C, we estimate an exponential function to derive a marginal cost curve. In all three cases, the estimated marginal cost remains above the demand curve at all take-up levels.
Figure B9C—Experimental estimates of cost and demand in rural electrification (with confidence intervals)

Notes: The demand and cost curves from figure 4, panel A are plotted with their associated 95 percent confidence intervals. Note that the demand scatterplot represents community-level means; at each price, we show the 95 percent confidence interval around the sample mean.
Notes: In the sample of communities, average land gradient ranges from 0.79 to 7.76 degrees with a mean of 2.15 degrees. We divide the sample into communities with “low” average land gradient (i.e., below median) gradient and communities with “high” average land gradient (i.e., above median). In panels A and B, we plot fitted lines from nonlinear estimations of $ATC = b_0/x + b_1 + b_2x$ for the low and high gradient subsamples, respectively (they lie nearly on top of each other so we present them here in separate panels for clarity).
Notes: Panel A reproduces figure 4, Panel B. In this scenario, the welfare loss associated with a mass electrification program is $43,292 per community. In panel B, we estimate the area under the unobserved [0, 1.3] domain by assuming that the demand curve intercepts the vertical axis at $3,000, rather than $424 (as in panel A). In this more conservative case, the welfare loss is $41,611 per community. In order to overturn this result (i.e. costs exceeding the consumer surplus), the intercept would need to be an astronomical $32,300. In panel C, the most conservative case, we assume that demand is a step function and calculate the welfare loss to be $32,517 per community. The required discounted future welfare gains needed for consumer surplus to exceed total costs across the three scenarios range from $384 (in panel C) to $511 (in panel A) per household.
Notes: This figure presents the estimated demand for and costs of a program structured like the planned Last Mile Connectivity Project, which offers households a fixed price of $171. In this case, only 23.7 percent of households would accept the price, and unless the government is willing to provide additional subsidies, the resulting electrification level would be low and there would be a welfare loss of $22,100 per community. Discounted average future welfare gains of $1,099 would be required per household.
Notes: After receiving payment, REA designers visited each treatment community to design the local low-voltage network. The designs were then used to estimate the required materials and determine a budgeted estimates of the total construction cost. Materials (e.g. poles, electricity line, service cables) represented 65.9 percent of total installation costs. The community in this example is the same as that shown in appendix figure B2.
Figure B14—Discrepancies in project costs and electrical poles, by contractor

Notes: Each circle represents one of the 14 contractors that participated in the overall project. The size of each circle is proportional to the number of household connections supplied by the contractor (mean=34). The horizontal axis represents the percentage difference between the total invoiced and budgeted cost for each contractor. The vertical axis represents the percentage difference between the actual and designed poles (i.e. materials) for each contractor. The average discrepancies in poles and costs are weighted by the number of connections per contractor and correspond to the values in appendix table B8.
Figure B15—Comparison of demand between households without bank accounts and with low-quality walls (Panel A), and households with bank accounts and high-quality walls (Panel B)

Panel A

Panel B

Notes: We plot the experimental results (solid black line) and responses to the contingent valuation questions included in the baseline survey. Households were first asked whether they would accept a hypothetical offer (i.e., randomly assigned price) to connect to the grid (dashed line, black squares). Households were then asked whether they would accept the same hypothetical offer if required to complete the payment in six weeks (dashed line, grey squares). Panel A presents demand curves for households without bank accounts and with low-quality walls. Panel B presents demand curves for households with bank accounts and high-quality walls.
Table B1—Comparison of social and economic indicators for study region and nationwide counties

<table>
<thead>
<tr>
<th></th>
<th>Study region</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>75th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total population</td>
<td>793,125</td>
<td>528,054</td>
<td>724,186</td>
<td>958,791</td>
<td></td>
</tr>
<tr>
<td>per square kilometer</td>
<td>375.4</td>
<td>39.5</td>
<td>183.2</td>
<td>332.9</td>
<td></td>
</tr>
<tr>
<td>% rural</td>
<td>85.7</td>
<td>71.6</td>
<td>79.5</td>
<td>84.4</td>
<td></td>
</tr>
<tr>
<td>% at school</td>
<td>44.7</td>
<td>37.0</td>
<td>42.4</td>
<td>45.2</td>
<td></td>
</tr>
<tr>
<td>% in school with secondary education</td>
<td>10.3</td>
<td>9.7</td>
<td>11.0</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>Total households</td>
<td>176,630</td>
<td>103,114</td>
<td>154,073</td>
<td>202,291</td>
<td></td>
</tr>
<tr>
<td>per square kilometer</td>
<td>83.6</td>
<td>7.9</td>
<td>44.3</td>
<td>78.7</td>
<td></td>
</tr>
<tr>
<td>% with high quality roof</td>
<td>59.7</td>
<td>49.2</td>
<td>78.5</td>
<td>88.2</td>
<td></td>
</tr>
<tr>
<td>% with high quality floor</td>
<td>27.7</td>
<td>20.6</td>
<td>29.7</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>% with high quality walls</td>
<td>32.2</td>
<td>20.3</td>
<td>28.0</td>
<td>41.7</td>
<td></td>
</tr>
<tr>
<td>% with piped water</td>
<td>6.3</td>
<td>6.9</td>
<td>14.2</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>Total public facilities</td>
<td>644</td>
<td>356</td>
<td>521</td>
<td>813</td>
<td></td>
</tr>
<tr>
<td>per capita (000s)</td>
<td>0.81</td>
<td>0.59</td>
<td>0.75</td>
<td>0.98</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The study region column presents weighted-average and average (where applicable) statistics for Busia and Siaya counties. Specifically, total population, total households, and total public facilities represent averages for Busia and Siaya. We exclude Nairobi and Mombasa, two counties that are entirely urban, from the nationwide county percentile columns. Demographic data is obtained from the 2009 Kenya Population and Housing Census (KPHC). Data on public facilities (defined as market centers, secondary schools, and health clinics) are obtained from the Rural Electrification Authority (REA). High quality roof indicates roofs made of concrete, tiles, or corrugated iron sheets. High quality floor indicates floors made of cement, tiles, or wood. High quality walls indicates walls made of stone, brick, or cement. Rural and urban electrification rates represent the proportion of households that stated that electricity was their main source of lighting during the 2009 census. Based on the 2009 census data, the mean (county-level) electrification rates in rural and urban areas were 4.6 and 32.6 percent, respectively. Nationally, the rural and urban electrification rates were 5.1 and 50.4 percent, respectively, and 22.7 percent overall. An earlier version of this table is presented in Lee et al. (2016).
Table B2—Baseline summary statistics and randomization balance check

<table>
<thead>
<tr>
<th></th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
<th>p-value of F-test (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Household head (respondent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female=1</td>
<td>0.63</td>
<td>0.02</td>
<td>-0.03</td>
<td>-0.02</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>[0.48]</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.0</td>
<td>-1.1</td>
<td>1.0</td>
<td>1.7</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>[16.3]</td>
<td>(1.2)</td>
<td>(1.1)</td>
<td>(1.4)</td>
<td></td>
</tr>
<tr>
<td>Senior citizen=1</td>
<td>0.27</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>[0.45]</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.04)</td>
<td></td>
</tr>
<tr>
<td>Attended secondary school=1</td>
<td>0.14</td>
<td>-0.01</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>[0.34]</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Married=1</td>
<td>0.66</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>[0.47]</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Not a farmer=1</td>
<td>0.23</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>[0.42]</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Employed=1</td>
<td>0.36</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.01</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>[0.48]</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Basic political awareness=1</td>
<td>0.13</td>
<td>-0.05***</td>
<td>-0.01</td>
<td>-0.03</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>[0.33]</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Has bank account=1</td>
<td>0.19</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>[0.39]</td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Monthly earnings (USD)</td>
<td>16.82</td>
<td>3.94</td>
<td>-2.01</td>
<td>-1.40</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>[53.74]</td>
<td>(4.03)</td>
<td>(3.25)</td>
<td>(3.08)</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Household characteristics

<table>
<thead>
<tr>
<th></th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
<th>p-value of F-test (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of members</td>
<td>5.3</td>
<td>-0.3*</td>
<td>0.1</td>
<td>-0.3</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>[2.7]</td>
<td>(0.1)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Youth members (age ≤ 18)</td>
<td>3.0</td>
<td>-0.1</td>
<td>0.1</td>
<td>-0.2</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>[2.2]</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>High-quality walls=1</td>
<td>0.15</td>
<td>0.05**</td>
<td>0.04</td>
<td>-0.01</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>[0.36]</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Land (acres)</td>
<td>1.9</td>
<td>0.30</td>
<td>0.2</td>
<td>0.1</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>[2.1]</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Distance to transformer (m)</td>
<td>348.6</td>
<td>14.8</td>
<td>9.5</td>
<td>22.1**</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>[140.0]</td>
<td>(9.9)</td>
<td>(12.2)</td>
<td>(10.6)</td>
<td></td>
</tr>
<tr>
<td>Monthly (non-charcoal) energy (USD)</td>
<td>5.55</td>
<td>-0.23</td>
<td>0.50*</td>
<td>-0.43</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>[5.20]</td>
<td>(0.27)</td>
<td>(0.27)</td>
<td>(0.28)</td>
<td></td>
</tr>
</tbody>
</table>

(Table continued on next page)
Regression coefficients on subsidy treatment indicators

<table>
<thead>
<tr>
<th></th>
<th>Control (1)</th>
<th>Low (2)</th>
<th>Medium (3)</th>
<th>High (4)</th>
<th>p-value of F-test (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel C: Household assets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bednets</td>
<td>2.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>[1.5]</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Bicycles</td>
<td>0.7</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>[0.7]</td>
<td>(0.0)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Sofa pieces</td>
<td>5.9</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>[5.2]</td>
<td>(0.4)</td>
<td>(0.4)</td>
<td>(0.4)</td>
<td></td>
</tr>
<tr>
<td>Chickens</td>
<td>7.0</td>
<td>0.4</td>
<td>-0.4</td>
<td>-0.2</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>[8.7]</td>
<td>(0.7)</td>
<td>(0.6)</td>
<td>(0.7)</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>1.7</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>[2.3]</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Radios</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>[0.5]</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>Televisions</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.1**</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>[0.4]</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>Panel D: Community characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community electrification rate (%)</td>
<td>5.3</td>
<td>1.6</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>[4.6]</td>
<td>(1.3)</td>
<td>(1.0)</td>
<td>(0.9)</td>
<td></td>
</tr>
<tr>
<td>Community population</td>
<td>534.7</td>
<td>42.1</td>
<td>26.4</td>
<td>9.8</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>[219.0]</td>
<td>(45.0)</td>
<td>(41.7)</td>
<td>(39.1)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Column 1 reports mean values for the control group, with standard deviations in brackets. Columns 2 to 4 report the coefficients from separate regressions in which a dependent variable is regressed on the full set of treatment indicators and stratification variables (i.e., county, market status, and whether the transformer was funded and installed early on, between 2008 and 2010). Standard errors are in parantheses. Column 5 reports the p-values of F-tests of whether the treatment coefficients are jointly equal to zero. Robust standard errors clustered at the community level. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01. Sample sizes range from 2,275 to 2,289 depending on missing values except in the specification with age as the dependent variable where the sample size is 2,205. Monthly earnings (USD) includes the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household. An overall F-test in an SUR specification across the 25 regressions yields a p-value on the F-statistic of 0.64; we cannot reject the hypothesis of baseline equality across all of the treatment arms and control groups. Only 11 of the variables listed in this table were pre-specified. An F-test across these variables yields a p-value of 0.07; we again cannot reject the hypothesis of baseline equality at the standard 95 percent confidence level.
Table B3—Characteristics of households taking-up electricity by treatment arm

<table>
<thead>
<tr>
<th></th>
<th>High subsidy</th>
<th>Medium subsidy</th>
<th>Low subsidy</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Respondent characteristics</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Female (%)</td>
<td>61.7</td>
<td>58.9</td>
<td>59.3</td>
<td>60.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td>53.7</td>
<td>52.8</td>
<td>50.6</td>
<td>51.6</td>
</tr>
<tr>
<td>Senior citizen (%)</td>
<td>28.9</td>
<td>24.4</td>
<td>25.9</td>
<td>28.6</td>
</tr>
<tr>
<td>Attended secondary school (%)</td>
<td>9.9</td>
<td>27.8***</td>
<td>33.3***</td>
<td>26.7**</td>
</tr>
<tr>
<td>Married (%)</td>
<td>64.2</td>
<td>74.4*</td>
<td>70.4</td>
<td>66.7</td>
</tr>
<tr>
<td>Not a farmer (%)</td>
<td>22.3</td>
<td>28.9</td>
<td>29.6</td>
<td>28.6</td>
</tr>
<tr>
<td>Employed (%)</td>
<td>36.4</td>
<td>45.6</td>
<td>55.6**</td>
<td>66.7**</td>
</tr>
<tr>
<td>Basic political awareness (%)</td>
<td>9.6</td>
<td>16.7*</td>
<td>14.8</td>
<td>6.7</td>
</tr>
<tr>
<td>Has bank account (%)</td>
<td>17.1</td>
<td>31.1***</td>
<td>40.7***</td>
<td>35.7*</td>
</tr>
<tr>
<td>Monthly earnings (USD)</td>
<td>14.4</td>
<td>26.0*</td>
<td>77.9***</td>
<td>45.8**</td>
</tr>
</tbody>
</table>

Panel B: Household characteristics

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of members</td>
<td>5.0</td>
<td>6.2***</td>
<td>6.2**</td>
<td>5.8</td>
</tr>
<tr>
<td>Youth members (age ≤ 18)</td>
<td>2.8</td>
<td>3.5***</td>
<td>3.9**</td>
<td>3.3</td>
</tr>
<tr>
<td>High-quality walls (%)</td>
<td>13.0</td>
<td>25.6***</td>
<td>51.9***</td>
<td>33.3**</td>
</tr>
<tr>
<td>Land (acres)</td>
<td>1.9</td>
<td>2.2</td>
<td>2.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Distance to transformer (m)</td>
<td>369.7</td>
<td>357.4</td>
<td>369.1</td>
<td>360.7</td>
</tr>
<tr>
<td>Monthly (non-charcoal) energy (USD)</td>
<td>5.2</td>
<td>7.6***</td>
<td>8.2***</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Panel C: Household assets

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bednets</td>
<td>2.3</td>
<td>2.8***</td>
<td>3.4***</td>
<td>2.5</td>
</tr>
<tr>
<td>Sofa pieces</td>
<td>5.9</td>
<td>9.0***</td>
<td>9.4***</td>
<td>8.9**</td>
</tr>
<tr>
<td>Chickens</td>
<td>6.9</td>
<td>9.1**</td>
<td>10.3*</td>
<td>6.4</td>
</tr>
<tr>
<td>Radios</td>
<td>0.3</td>
<td>0.5**</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Televisions</td>
<td>0.1</td>
<td>0.3***</td>
<td>0.5***</td>
<td>0.4***</td>
</tr>
</tbody>
</table>

Take-up of electricity connections | 363 | 90 | 27 | 15 |

Notes: Columns 1, 2, and 3 report sample means for unconnected households that chose to take-up a subsidized electricity connection. Column 4 reports sample means for control group households that chose to connect on their own. Basic political awareness indicator captures whether the household head was able to correctly identify the heads of state of Tanzania, Uganda, and the United States. Monthly earnings (USD) includes the respondent’s profits from businesses and self-employment, salary and benefits from employment, and agricultural sales for the entire household. The asterisks in columns 2, 3, and 4 indicate statistically significant differences compared to column 1: * P < 0.10; ** P < 0.05; *** P < 0.01.
Table B4A—Impact of connection subsidy on take-up: Interactions with community-level variables

<table>
<thead>
<tr>
<th>Interacted variable</th>
<th>Busia county</th>
<th>Transformer funded early on</th>
<th>Market center</th>
<th>Baseline population</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>T1: Low subsidy—29% discount</td>
<td>5,9***</td>
<td>2.7</td>
<td>5.0***</td>
<td>6.3***</td>
</tr>
<tr>
<td></td>
<td>(1.5)</td>
<td>(1.7)</td>
<td>(1.9)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>T2: Medium subsidy—57% discount</td>
<td>22.9***</td>
<td>20.9***</td>
<td>26.8***</td>
<td>23.5***</td>
</tr>
<tr>
<td></td>
<td>(4.0)</td>
<td>(5.8)</td>
<td>(6.2)</td>
<td>(4.8)</td>
</tr>
<tr>
<td>T3: High subsidy—100% discount</td>
<td>95.0***</td>
<td>95.2***</td>
<td>93.7***</td>
<td>94.9***</td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(1.7)</td>
<td>(1.7)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>Interacted variable</td>
<td>0.2</td>
<td>0.2</td>
<td>0.9</td>
<td>-0.0</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>(0.8)</td>
<td>(1.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>T1 × interacted variable</td>
<td>5.6**</td>
<td>2.1</td>
<td>-1.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(3.1)</td>
<td>(3.3)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>T2 × interacted variable</td>
<td>3.5</td>
<td>-8.2</td>
<td>-2.7</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(8.0)</td>
<td>(7.9)</td>
<td>(9.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>T3 × interacted variable</td>
<td>-0.4</td>
<td>2.7</td>
<td>0.2</td>
<td>-0.0</td>
</tr>
<tr>
<td></td>
<td>(2.6)</td>
<td>(2.5)</td>
<td>(2.4)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Take-up in control group</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Observations</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up. The mean of the dependent variable is 21.6. Robust standard errors clustered at the community level in parentheses. All specifications include the pre-specified household and community covariates. Household covariates include the age of the household head, indicators for whether the household respondent attended secondary school, is a senior citizen, is not primarily a farmer, is employed, and has a bank account, an indicator for whether the household has high-quality walls, and the number of chickens (a measure of assets) owned by the household. Community covariates include indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Asterisks indicate coefficient statistical significance level (2-tailed): * $P < 0.10$; ** $P < 0.05$; *** $P < 0.01$. The number of observations is somewhat smaller than the total number of households in our sample (2,289) due to missing data. The coefficients do not change appreciably when the households with missing data are included in the specification in column 1.
Table B4B—Impact of connection subsidy on take-up: Interactions with household-level variables

<table>
<thead>
<tr>
<th>Interacted variable</th>
<th>Household size</th>
<th>Age of household head</th>
<th>Senior household head</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>T1: Low subsidy—29% discount</td>
<td>0.6</td>
<td>5.5</td>
<td>5.5***</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(5.0)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>T2: Medium subsidy—57% discount</td>
<td>9.8*</td>
<td>26.2***</td>
<td>23.7***</td>
</tr>
<tr>
<td></td>
<td>(5.7)</td>
<td>(7.1)</td>
<td>(4.2)</td>
</tr>
<tr>
<td>T3: High subsidy—100% discount</td>
<td>94.2***</td>
<td>95.2***</td>
<td>95.5***</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(3.5)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Interacted variable</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.0)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>T1 × interacted variable</td>
<td>1.0*</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td>(0.1)</td>
<td>(4.3)</td>
</tr>
<tr>
<td>T2 × interacted variable</td>
<td>2.4***</td>
<td>-0.1</td>
<td>-3.1</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>(0.1)</td>
<td>(3.6)</td>
</tr>
<tr>
<td>T3 × interacted variable</td>
<td>0.1</td>
<td>-0.0</td>
<td>-2.0</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(0.1)</td>
<td>(2.3)</td>
</tr>
<tr>
<td>Take-up in control group</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Observations</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up. The mean of the dependent variable is 21.6. Robust standard errors clustered at the community level in parentheses. All specifications include the pre-specified household and community covariates. Household covariates include the age of the household head, indicators for whether the household respondent attended secondary school, is a senior citizen, is not primarily a farmer, is employed, and has a bank account, an indicator for whether the household has high-quality walls, and the number of chickens (a measure of assets) owned by the household. Community covariates include indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table B4C—Impact of connection subsidy on take-up: Interactions with household-level variables

<table>
<thead>
<tr>
<th>Interacted variable</th>
<th>Number of chickens</th>
<th>Has bank account</th>
<th>Not a farmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>T1: Low subsidy—29% discount</td>
<td>4.7***</td>
<td>4.5***</td>
<td>5.4***</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(1.4)</td>
<td>(1.6)</td>
</tr>
<tr>
<td>T2: Medium subsidy—57% discount</td>
<td>17.2***</td>
<td>20.3***</td>
<td>20.1***</td>
</tr>
<tr>
<td></td>
<td>(3.8)</td>
<td>(4.1)</td>
<td>(4.6)</td>
</tr>
<tr>
<td>T3: High subsidy—100% discount</td>
<td>93.8***</td>
<td>94.9***</td>
<td>94.9***</td>
</tr>
<tr>
<td></td>
<td>(1.8)</td>
<td>(1.4)</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Interacted variable</td>
<td>-0.1*</td>
<td>1.1</td>
<td>-0.7</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(1.2)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>T1 × interacted variable</td>
<td>0.2</td>
<td>8.4</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(5.9)</td>
<td>(3.6)</td>
</tr>
<tr>
<td>T2 × interacted variable</td>
<td>0.8***</td>
<td>13.5*</td>
<td>13.5*</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(7.3)</td>
<td>(7.7)</td>
</tr>
<tr>
<td>T3 × interacted variable</td>
<td>0.2</td>
<td>-0.0</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(2.5)</td>
<td>(2.4)</td>
</tr>
<tr>
<td>Take-up in control group</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Observations</td>
<td>2176</td>
<td>2176</td>
<td>2176</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.70</td>
<td>0.69</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up. The mean of the dependent variable is 21.6. Robust standard errors clustered at the community level in parentheses. All specifications include the pre-specified household and community covariates. Household covariates include the age of the household head, indicators for whether the household respondent attended secondary school, is a senior citizen, is not primarily a farmer, is employed, and has a bank account, an indicator for whether the household has high-quality walls, and the number of chickens (a measure of assets) owned by the household. Community covariates include indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Asterisks indicate coefficient statistical significance level (2-tailed): * $P < 0.10$; ** $P < 0.05$; *** $P < 0.01$.
Table B4D—Impact of connection subsidy on take-up: Full list of controls

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (intercept)</td>
<td>1.3***</td>
<td>-9.5**</td>
<td>-10.6**</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(3.9)</td>
<td>(4.7)</td>
</tr>
<tr>
<td>T1: Low subsidy—29% discount</td>
<td>5.8***</td>
<td>5.9***</td>
<td>6.2***</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(1.5)</td>
<td>(1.5)</td>
</tr>
<tr>
<td>T2: Medium subsidy—57% discount</td>
<td>22.4***</td>
<td>22.9***</td>
<td>22.7***</td>
</tr>
<tr>
<td></td>
<td>(4.0)</td>
<td>(4.0)</td>
<td>(4.0)</td>
</tr>
<tr>
<td>T3: High subsidy—100% discount</td>
<td>94.2***</td>
<td>95.0***</td>
<td>95.1***</td>
</tr>
<tr>
<td></td>
<td>(1.2)</td>
<td>(1.3)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Female=1</td>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.3)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>Senior citizen=1</td>
<td>0.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Attended secondary school=1</td>
<td>3.8**</td>
<td>3.3**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.7)</td>
<td>(1.7)</td>
<td></td>
</tr>
<tr>
<td>Married=1</td>
<td></td>
<td>-1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.2)</td>
<td></td>
</tr>
<tr>
<td>Not a farmer=1</td>
<td>1.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Employed=1</td>
<td>1.1</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(1.3)</td>
<td></td>
</tr>
<tr>
<td>Basic political awareness=1</td>
<td></td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Has bank account=1</td>
<td>2.6</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.7)</td>
<td>(1.6)</td>
<td></td>
</tr>
<tr>
<td>Monthly earnings (USD)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>Number of members</td>
<td>0.6***</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.4)</td>
<td></td>
</tr>
<tr>
<td>Youth members (age ≤ 18)</td>
<td></td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.5)</td>
<td></td>
</tr>
<tr>
<td>High-quality walls=1</td>
<td>3.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.1)</td>
<td>(2.1)</td>
<td></td>
</tr>
</tbody>
</table>

(Table continued on next page)
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land (acres)</td>
<td>-0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to transformer (m)</td>
<td>-0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly (non-charcoal) energy (USD)</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bednets</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bicycles</td>
<td>1.7*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of sofa pieces</td>
<td>0.3**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of chickens</td>
<td>0.1**</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Number of cattle</td>
<td>-0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of radios</td>
<td>-0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of televisions</td>
<td>2.7*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community electrification rate (%)</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.2)</td>
<td></td>
</tr>
<tr>
<td>Community population</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
<td></td>
</tr>
<tr>
<td>Busia=1</td>
<td>1.7</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.5)</td>
<td>(1.5)</td>
<td></td>
</tr>
<tr>
<td>Funded and installed early on=1</td>
<td>-0.5</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td>(1.6)</td>
<td></td>
</tr>
<tr>
<td>Market status=1</td>
<td>0.2</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.6)</td>
<td>(1.7)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>2289</td>
<td>2176</td>
<td>2162</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.68</td>
<td>0.69</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up, with a mean of 21.6. Robust standard errors clustered at the community level in parentheses. Column 2 includes pre-specified household and community controls. Column 3 includes both pre-specified controls and additional characteristics listed in appendix table B2. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table B4E—Impact of grid connection price on take-up

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>-0.6***</td>
<td>-0.6***</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>P² × 1000</td>
<td>0.8***</td>
<td>0.8***</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Senior citizen=1</td>
<td>0.6</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>(1.8)</td>
<td>(1.8)</td>
</tr>
<tr>
<td>Attended secondary school=1</td>
<td>3.7**</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>(1.5)</td>
<td>(1.5)</td>
</tr>
<tr>
<td>Not a farmer=1</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>(1.2)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Employed=1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.1)</td>
</tr>
<tr>
<td>Has bank account=1</td>
<td>2.4*</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Number of members</td>
<td>0.6***</td>
<td>0.6***</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>High-quality walls=1</td>
<td>3.9***</td>
<td>3.9***</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Number of chickens</td>
<td>0.1**</td>
<td>0.1**</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Community electrification rate (%)</td>
<td>0.2*</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Community population</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
<td>(0.0)</td>
</tr>
<tr>
<td>Busia=1</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.1)</td>
</tr>
<tr>
<td>Funded early on=1</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.1)</td>
</tr>
<tr>
<td>Market status=1</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>(1.2)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Observations</td>
<td>2289</td>
<td>2176</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.68</td>
<td>0.69</td>
</tr>
<tr>
<td>F-statistic</td>
<td>2383.00</td>
<td>298.74</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator variable (multiplied by 100) for household take-up, with a mean of 21.6. Polynomials for the price, P and P^2, are instrumented with T^M and T^H. Asterisks indicate coefficient statistical significance level (2-tailed): * $P < 0.10$; ** $P < 0.05$; *** $P < 0.01$.
Table B5A—Actual versus fitted total cost and ATC values (at various coverage levels)

<table>
<thead>
<tr>
<th>Mean coverage levels</th>
<th>Coverage benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(sample communities)</td>
</tr>
<tr>
<td>2.1%</td>
<td>T1: Low (1)</td>
</tr>
<tr>
<td>4.8%</td>
<td>T2: Medium (2)</td>
</tr>
<tr>
<td>17.1%</td>
<td>T3: High (3)</td>
</tr>
<tr>
<td>Total cost</td>
<td>ATC</td>
</tr>
<tr>
<td></td>
<td>4,699</td>
</tr>
<tr>
<td></td>
<td>6,419</td>
</tr>
<tr>
<td></td>
<td>14,591</td>
</tr>
<tr>
<td>Notes: Columns 1 to 3 report total cost (corresponding to each coverage level) and the average total cost per connection (ATC) based on the mean coverage levels achieved in the experiment. Columns 4 to 7 report fitted total cost and ATC at various benchmarks, based on nonlinear (panel B) and IV (panel C) regressions using data from both the sample and designed communities.</td>
<td></td>
</tr>
</tbody>
</table>
Table B5B—Impact of scale on average total cost per connection (ATC), sample and designed communities

<table>
<thead>
<tr>
<th></th>
<th>Sample & Designed—OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Number of connections (M)</td>
<td>-81.1***</td>
</tr>
<tr>
<td></td>
<td>(16.5)</td>
</tr>
<tr>
<td>M²</td>
<td>0.8***</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
</tr>
<tr>
<td>Community population</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
</tr>
<tr>
<td>Community population × M</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
</tr>
<tr>
<td>Community population × M² / 100</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
</tr>
<tr>
<td>Land gradient</td>
<td>-599.3***</td>
</tr>
<tr>
<td></td>
<td>(164.1)</td>
</tr>
<tr>
<td>Land gradient × M</td>
<td>36.7***</td>
</tr>
<tr>
<td></td>
<td>(13.9)</td>
</tr>
<tr>
<td>Land gradient × M²</td>
<td>-0.3*</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
</tr>
<tr>
<td>Households</td>
<td>-4.9</td>
</tr>
<tr>
<td></td>
<td>(11.3)</td>
</tr>
<tr>
<td>Households × M</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
</tr>
<tr>
<td>Households × M² / 100</td>
<td>-0.9*</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
</tr>
<tr>
<td>Community controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean of dep. variable (USD)</td>
<td>1633</td>
</tr>
<tr>
<td>Observations</td>
<td>77</td>
</tr>
<tr>
<td>R²</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the budgeted average total cost per connection (ATC) in USD. The dataset includes both sample and designed communities. Column 1 displays the same results as column 2 in appendix table A1B. Average land gradient ranges from 0.79 to 7.76 degrees with a mean of 2.15 degrees. Column 4 includes interaction terms for the (demeaned) number of households (i.e., residential compounds) in each community. Note that this variable is not included in the standard list of controls. Robust standard errors are clustered at the community level. All specifications include the pre-specified community-level covariates. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table B6—Estimated treatment effects on pre-specified and grouped outcomes for the spillover sample

<table>
<thead>
<tr>
<th></th>
<th>Control (1)</th>
<th>ITT (2)</th>
<th>TOT (3)</th>
<th>FDR q-val (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1. Grid connected (%)</td>
<td>6.1</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[23.9]</td>
<td>(2.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2. Monthly electricity spending (USD)</td>
<td>0.24</td>
<td>0.32</td>
<td>4.29</td>
<td>.602</td>
</tr>
<tr>
<td></td>
<td>[2.27]</td>
<td>(0.31)</td>
<td>(3.87)</td>
<td></td>
</tr>
<tr>
<td>P3. Household employed or own business (%)</td>
<td>90.5</td>
<td>2.6</td>
<td>70.2</td>
<td>.602</td>
</tr>
<tr>
<td></td>
<td>[53.1]</td>
<td>(4.7)</td>
<td>(63.1)</td>
<td></td>
</tr>
<tr>
<td>P4. Total hours worked last week</td>
<td>49.1</td>
<td>0.4</td>
<td>7.8</td>
<td>.934</td>
</tr>
<tr>
<td></td>
<td>[30.7]</td>
<td>(2.7)</td>
<td>(36.2)</td>
<td></td>
</tr>
<tr>
<td>P5. Total asset value (USD)</td>
<td>870</td>
<td>-25</td>
<td>100</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>[871]</td>
<td>(115)</td>
<td>(1585)</td>
<td></td>
</tr>
<tr>
<td>P6. Ann. consumption of major food items (USD)</td>
<td>126</td>
<td>-3</td>
<td>-44</td>
<td>.934</td>
</tr>
<tr>
<td></td>
<td>[97]</td>
<td>(10)</td>
<td>(134)</td>
<td></td>
</tr>
<tr>
<td>P7. Recent health symptoms index</td>
<td>0</td>
<td>0.05</td>
<td>1.35</td>
<td>.602</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.09)</td>
<td>(1.19)</td>
<td></td>
</tr>
<tr>
<td>P8. Normalized life satisfaction</td>
<td>0</td>
<td>-0.08</td>
<td>-0.33</td>
<td>.934</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.07)</td>
<td>(1.03)</td>
<td></td>
</tr>
<tr>
<td>P9. Political and social awareness index</td>
<td>0</td>
<td>0.02</td>
<td>0.65</td>
<td>.841</td>
</tr>
<tr>
<td></td>
<td>[1]</td>
<td>(0.06)</td>
<td>(0.90)</td>
<td></td>
</tr>
<tr>
<td>P10. Average student test Z-score</td>
<td>0</td>
<td>0.10</td>
<td>1.89</td>
<td>.602</td>
</tr>
<tr>
<td></td>
<td>[0.99]</td>
<td>(0.12)</td>
<td>(1.72)</td>
<td></td>
</tr>
</tbody>
</table>

| G1. Economic Index (P3 to P6 outcomes) | 0 | 0.00 | 0.58 | – |
| | [1] | (0.09) | (1.18) | |

| G2. Non-Economic Index (P7 to P10 outcomes) | 0 | 0.06 | 1.87* | – |
| | [1] | (0.08) | (1.14) | |

Notes: In panel A, we report treatment effects on ten pre-specified primary outcomes. Column 1 reports mean values for the control group, with standard deviations in brackets. Column 2 reports coefficients from separate ITT regressions in which the dependent variable (e.g., P1) is regressed on the high subsidy treatment indicator. The low and medium subsidy groups are excluded from these regressions. Sample sizes range from 875 to 896 for the P1 to P9 regressions and 630 for the P10 regression. Column 3 reports coefficients from separate TOT (IV) regressions in which the estimated community electrification rate is instrumented with the three subsidy treatment indicators. Sample sizes range from 1,314 to 1,345 for the P1 to P9 regressions, to 885 for the P10 regression. All specifications include the relevant set of pre-specified household, student, and community covariates. Column 4 reports the FDR-adjusted q-values associated with the coefficient estimates in column 3. In panel B, we report mean treatment effects on outcomes grouped into an economic and non-economic index; these two groupings of outcomes were not pre-specified. Robust standard errors clustered at the community level in parentheses. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
Table B7—Benchmarking average monthly electricity consumption in kWh and USD

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Mean</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Study sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newly connected households (2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>12.1</td>
<td>0.0</td>
<td>3.6</td>
<td>26.6</td>
<td>475</td>
</tr>
<tr>
<td>USD</td>
<td>2.50</td>
<td>0.0</td>
<td>1.97</td>
<td>3.61</td>
<td></td>
</tr>
<tr>
<td>Connected at baseline (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>61.0</td>
<td>12.4</td>
<td>41.8</td>
<td>64.2</td>
<td>149</td>
</tr>
<tr>
<td>USD</td>
<td>10.57</td>
<td>3.41</td>
<td>6.82</td>
<td>11.39</td>
<td></td>
</tr>
<tr>
<td>Connected at baseline (2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>77.3</td>
<td>17.4</td>
<td>53.2</td>
<td>83.8</td>
<td>156</td>
</tr>
<tr>
<td>USD</td>
<td>10.57</td>
<td>2.95</td>
<td>5.91</td>
<td>11.82</td>
<td></td>
</tr>
<tr>
<td>Panel B: Kenya Power customers (2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample region (Busia and Siaya counties)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>46.1</td>
<td>12.3</td>
<td>29.7</td>
<td>58.2</td>
<td>2,147</td>
</tr>
<tr>
<td>USD</td>
<td>8.62</td>
<td>2.75</td>
<td>4.82</td>
<td>9.54</td>
<td></td>
</tr>
<tr>
<td>Nationwide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>85.1</td>
<td>18.6</td>
<td>40.5</td>
<td>87.6</td>
<td>111,084</td>
</tr>
<tr>
<td>USD</td>
<td>16.62</td>
<td>3.39</td>
<td>6.03</td>
<td>15.18</td>
<td></td>
</tr>
<tr>
<td>Kisumu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>79.2</td>
<td>24.3</td>
<td>49.0</td>
<td>89.3</td>
<td>1,666</td>
</tr>
<tr>
<td>USD</td>
<td>14.95</td>
<td>4.01</td>
<td>7.22</td>
<td>15.75</td>
<td></td>
</tr>
<tr>
<td>Nairobi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kWh</td>
<td>189.9</td>
<td>30.3</td>
<td>72.8</td>
<td>178.6</td>
<td>15,577</td>
</tr>
<tr>
<td>USD</td>
<td>39.33</td>
<td>4.71</td>
<td>12.07</td>
<td>34.8</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Panel A presents estimates of monthly electricity consumption in kWh and USD for newly connected households (i.e., treatment group households that were connected after the baseline survey) and households that were already connected at baseline. Electricity consumption amounts are estimated using survey responses to the questions, “How much was the amount of your last monthly electricity bill?” for postpaid consumers, and “In the past three months, how much did you spend on top-ups” for prepaid consumers, and the 2014 and 2016 electricity rate structures. Panel B presents average monthly electricity consumption in kWh and USD for a random 10 percent sample of Kenya Power domestic accounts (i.e., mostly residential customers), based on electricity bills issued in 2014. In panel A, we use annual averages for certain components of the electricity bill (e.g., the Fuel Cost Charge, which fluctuates monthly). As a result, there are discrepancies between panels A and B in terms of conversions from USD to kWh. Kenya Shilling amounts are converted into U.S. dollars at the 2014 and 2016 average exchange rates of 87.94 and 101.53 KES/USD, respectively.
Table B8—Costs of infrastructure construction associated with electricity connection projects

<table>
<thead>
<tr>
<th>Panel A: Project costs, budgeted and invoiced</th>
<th>Invoiced (Panel A)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Budgeted</td>
<td>Observed (Panel B)</td>
</tr>
<tr>
<td>Total</td>
<td>Per HH</td>
<td>Total</td>
</tr>
<tr>
<td>Local network</td>
<td>383,207</td>
<td>798</td>
</tr>
<tr>
<td>Labor and transport</td>
<td>177,457</td>
<td>370</td>
</tr>
<tr>
<td>Service lines</td>
<td>15,812</td>
<td>33</td>
</tr>
<tr>
<td>Total cost</td>
<td>576,476</td>
<td>1,201</td>
</tr>
</tbody>
</table>

Panel B: Project materials, budgeted and observed

| Electricity poles | 1,449 | 3.0 | 1,141 | 2.4 | – | -308 | -21.3% |

Notes: In panel A, project costs are reported in USD and consist of administrative budgeted estimates and final invoiced amounts. “Local network” consists of high- and low-voltage electricity poles and cables. “Labor and transport” also includes design work and small contingency items. “Service lines” are typically single “drop-down” cables that connect households to an electricity line. Kenya Power metering costs and household wiring costs are not included in this summary. In total, the project involved roughly 101.6 km of new low-voltage lines. In panel B, we compare the budgeted number of electricity poles to the actual number of poles that were observed to have been installed.
Table B9—Detailed breakdown of labor and transport costs for nine projects (three contracts)

<table>
<thead>
<tr>
<th>Panel A: Labor costs (e.g., digging holes, installation, clearing bush, dropping service lines, etc.)</th>
<th>Contract #1</th>
<th>Contract #2</th>
<th>Contract #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgeted LV poles</td>
<td>40</td>
<td>107</td>
<td>62</td>
</tr>
<tr>
<td>Invoiced LV poles</td>
<td>38</td>
<td>98</td>
<td>76</td>
</tr>
<tr>
<td>Actual (counted) LV poles</td>
<td>39</td>
<td>92</td>
<td>60</td>
</tr>
<tr>
<td>Difference (Actual - Invoiced)</td>
<td>+1</td>
<td>-6</td>
<td>-16</td>
</tr>
<tr>
<td>Avg. labor cost per LV pole</td>
<td>27.59</td>
<td>27.59</td>
<td>27.59</td>
</tr>
<tr>
<td>Total LV poles labor</td>
<td>1,048</td>
<td>2,704</td>
<td>1,655</td>
</tr>
<tr>
<td>Budgeted stays</td>
<td>–</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td>Invoiced stays</td>
<td>32</td>
<td>68</td>
<td>43</td>
</tr>
<tr>
<td>Avg. labor cost per stay</td>
<td>19.22</td>
<td>19.22</td>
<td>19.22</td>
</tr>
<tr>
<td>Total stays labor</td>
<td>615</td>
<td>1,308</td>
<td>827</td>
</tr>
<tr>
<td>Budgeted HV poles</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Invoiced HV poles</td>
<td>12</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Avg. labor cost per HV pole</td>
<td>35.59</td>
<td>35.59</td>
<td>35.59</td>
</tr>
<tr>
<td>Total HV poles labor</td>
<td>427</td>
<td>178</td>
<td>214</td>
</tr>
<tr>
<td>Additional labor</td>
<td>832</td>
<td>1,552</td>
<td>2,199</td>
</tr>
<tr>
<td>Total labor</td>
<td>2,922</td>
<td>5,742</td>
<td>4,895</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Transport costs (e.g., wood pole and other materials)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Large lorries</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Invoiced round-trip distance (km)</td>
<td>320</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Google round-trip distance (km)</td>
<td>218</td>
<td>256</td>
<td>218</td>
</tr>
<tr>
<td>Difference (Actual - Invoiced)</td>
<td>-102</td>
<td>-44</td>
<td>-82</td>
</tr>
<tr>
<td>Avg. cost per km</td>
<td>3.75</td>
<td>3.75</td>
<td>3.75</td>
</tr>
<tr>
<td>Total large lorry transport</td>
<td>2,402</td>
<td>4,503</td>
<td>4,503</td>
</tr>
<tr>
<td>Small lorries</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Invoiced round-trip distance (km)</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Avg. cost per km</td>
<td>2.98</td>
<td>2.98</td>
<td>2.98</td>
</tr>
<tr>
<td>Total small lorry transport</td>
<td>745</td>
<td>2,234</td>
<td>1,490</td>
</tr>
<tr>
<td>Total transport</td>
<td>3,146</td>
<td>6,738</td>
<td>5,993</td>
</tr>
</tbody>
</table>

Budgeted labor and transport costs	6,126	12,708	8,956
Invoiced labor and transport costs	7,040	14,477	12,516
Difference (Invoiced - Budgeted)	14.9%	13.9%	39.8%

Projects | 3 | 3 | 3 |
Households connected | 18 | 38 | 22 |
Construction days | 36 | 31 | 35 |

Notes: Based on the detailed invoice submitted to REA. “LV” denotes low-voltage and “HV” denotes high-voltage. Additional labor includes costs of bush clearing, tree cutting, signage, dropping service cables, and other expenses. Each large lorry is capable of transporting 30 poles. Each small lorry is capable of transporting 2.3 km of line materials.
<table>
<thead>
<tr>
<th>Row</th>
<th>Site ID</th>
<th>Group</th>
<th>Wave</th>
<th>Treated HHs</th>
<th>Connected</th>
<th>Metered</th>
<th>Blackout</th>
<th>Primary issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1204</td>
<td>Treatment</td>
<td>2</td>
<td>15</td>
<td>Feb-15</td>
<td>May-15</td>
<td>4 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>2</td>
<td>1403</td>
<td>Treatment</td>
<td>1</td>
<td>15</td>
<td>Mar-15</td>
<td>Jul-15</td>
<td>1 month</td>
<td>Commissioning</td>
</tr>
<tr>
<td>3</td>
<td>1505</td>
<td>Treatment</td>
<td>2</td>
<td>1</td>
<td>Mar-15</td>
<td>May-15</td>
<td>1 month</td>
<td>Commissioning</td>
</tr>
<tr>
<td>4</td>
<td>2101</td>
<td>Treatment</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>8 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>5</td>
<td>2103</td>
<td>Treatment</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>4 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>6</td>
<td>2106</td>
<td>Treatment</td>
<td>1</td>
<td>15</td>
<td>Nov-14</td>
<td>Nov-14</td>
<td>8 months</td>
<td>Commissioning</td>
</tr>
<tr>
<td>7</td>
<td>2114</td>
<td>Treatment</td>
<td>1</td>
<td>8</td>
<td>Dec-14</td>
<td>Dec-14</td>
<td>12 months</td>
<td>Relocated by Kenya Power</td>
</tr>
<tr>
<td>8</td>
<td>2116</td>
<td>Treatment</td>
<td>1</td>
<td>14</td>
<td>Sep-14</td>
<td>May-15</td>
<td>2 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>9</td>
<td>2202</td>
<td>Treatment</td>
<td>1</td>
<td>1</td>
<td>Sep-14</td>
<td>Oct-14</td>
<td>1 month</td>
<td>Technical failure</td>
</tr>
<tr>
<td>10</td>
<td>2217</td>
<td>Treatment</td>
<td>1</td>
<td>13</td>
<td>Oct-14</td>
<td>Dec-14</td>
<td>1 month</td>
<td>Technical failure</td>
</tr>
<tr>
<td>11</td>
<td>2222</td>
<td>Treatment</td>
<td>1</td>
<td>3</td>
<td>Oct-14</td>
<td>Dec-14</td>
<td>4 months</td>
<td>Leaking oil</td>
</tr>
<tr>
<td>12</td>
<td>2303</td>
<td>Treatment</td>
<td>2</td>
<td>7</td>
<td>May-15</td>
<td>Jun-15</td>
<td>4 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>13</td>
<td>2406</td>
<td>Treatment</td>
<td>2</td>
<td>15</td>
<td>Apr-15</td>
<td>Jun-15</td>
<td>1 month</td>
<td>Burnt out</td>
</tr>
<tr>
<td>14</td>
<td>2503</td>
<td>Treatment</td>
<td>1</td>
<td>1</td>
<td>Oct-14</td>
<td>Oct-14</td>
<td>6 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>15</td>
<td>2506</td>
<td>Treatment</td>
<td>1</td>
<td>15</td>
<td>Dec-14</td>
<td>Feb-15</td>
<td>9 months</td>
<td>Commissioning</td>
</tr>
<tr>
<td>16</td>
<td>1103</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>2 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>17</td>
<td>1109</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>6 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>18</td>
<td>1203</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>1 month</td>
<td>Technical failure</td>
</tr>
<tr>
<td>19</td>
<td>1205</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>1 month</td>
<td>Technical failure</td>
</tr>
<tr>
<td>20</td>
<td>1405</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>6 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>21</td>
<td>1410</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>2 months</td>
<td>Relocated by Kenya Power</td>
</tr>
<tr>
<td>22</td>
<td>2103</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>4 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>23</td>
<td>2115</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>2 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>24</td>
<td>2212</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>5 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>25</td>
<td>2220</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>8 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>26</td>
<td>2304</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>3 months</td>
<td>Stolen</td>
</tr>
<tr>
<td>27</td>
<td>2315</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>3 months</td>
<td>Burnt out</td>
</tr>
<tr>
<td>28</td>
<td>2504</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>4 months</td>
<td>Technical failure</td>
</tr>
<tr>
<td>29</td>
<td>2515</td>
<td>Control</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>4 months</td>
<td>Damaged by weather</td>
</tr>
</tbody>
</table>

Note: “Commissioning” refers to a situation in which the transformer (and related equipment) is installed but electricity is not being delivered.
Table B11A—Impact of randomized offers on hypothetical and actual take-up

<table>
<thead>
<tr>
<th>Stated WTP 1</th>
<th>Stated WTP 2</th>
<th>Actual take-up, experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>$853 offer</td>
<td>-19.7***</td>
<td>-8.2***</td>
</tr>
<tr>
<td></td>
<td>(3.7)</td>
<td>(2.1)</td>
</tr>
<tr>
<td>$284 offer / T1: Low subsidy—29% discount</td>
<td>16.3***</td>
<td>6.0**</td>
</tr>
<tr>
<td></td>
<td>(3.4)</td>
<td>(2.5)</td>
</tr>
<tr>
<td>$227 offer</td>
<td>14.3***</td>
<td>7.3***</td>
</tr>
<tr>
<td></td>
<td>(3.6)</td>
<td>(2.7)</td>
</tr>
<tr>
<td>$171 offer / T2: Medium subsidy—57% discount</td>
<td>24.1***</td>
<td>18.5***</td>
</tr>
<tr>
<td></td>
<td>(3.4)</td>
<td>(2.7)</td>
</tr>
<tr>
<td>$114 offer</td>
<td>25.2***</td>
<td>19.7***</td>
</tr>
<tr>
<td></td>
<td>(3.5)</td>
<td>(2.9)</td>
</tr>
<tr>
<td>Free offer / T3: High subsidy—100% discount</td>
<td>62.0***</td>
<td>87.5***</td>
</tr>
<tr>
<td></td>
<td>(2.9)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>-0.4***</td>
<td>-0.2**</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Senior citizen=1</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>(3.5)</td>
<td>(3.0)</td>
</tr>
<tr>
<td>Attended secondary school=1</td>
<td>15.6***</td>
<td>5.4**</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(2.4)</td>
</tr>
<tr>
<td>Not a farmer=1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>(2.4)</td>
<td>(1.9)</td>
</tr>
<tr>
<td>Employed=1</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(2.2)</td>
<td>(1.9)</td>
</tr>
<tr>
<td>Has bank account=1</td>
<td>11.1***</td>
<td>11.0***</td>
</tr>
<tr>
<td></td>
<td>(2.5)</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Number of household members</td>
<td>1.3***</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>High-quality walls=1</td>
<td>9.1***</td>
<td>11.6***</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(2.3)</td>
</tr>
<tr>
<td>Number of chickens=1</td>
<td>0.7***</td>
<td>0.4***</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Take-up in status quo (i.e., $398) group</td>
<td>36.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>53.7</td>
<td>25.5</td>
</tr>
<tr>
<td>Observations</td>
<td>2,157</td>
<td>2,157</td>
</tr>
<tr>
<td>R²</td>
<td>0.23</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Notes: In column 1, the dependent variable is an indicator for whether the household accepted the hypothetical offer (i.e. randomly assigned price). In column 2, it is an indicator for whether the household accepted the hypothetical offer if required to complete the payment in six weeks. In column 3, it is an indicator for experimental take-up. All dependent variables are multiplied by 100. Robust standard errors clustered at the community level in parentheses. All specifications include pre-specified community covariates including indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Asterisks indicate coefficient statistical significance level (2-tailed): * $P < 0.10$; ** $P < 0.05$; *** $P < 0.01$.

Table B11B—Impact of WTP offer on stated take-up of electricity connections

<table>
<thead>
<tr>
<th></th>
<th>Baseline (1)</th>
<th>High-quality walls (2)</th>
<th>Has bank account (3)</th>
<th>Attended secondary schooling (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$853 offer</td>
<td>-8.2**</td>
<td>-6.0***</td>
<td>-8.0***</td>
<td>-5.4**</td>
</tr>
<tr>
<td></td>
<td>(2.1)</td>
<td>(2.2)</td>
<td>(1.9)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>$284 offer / T1: Low subsidy—29% discount</td>
<td>6.0**</td>
<td>5.0**</td>
<td>4.9*</td>
<td>6.0**</td>
</tr>
<tr>
<td></td>
<td>(2.5)</td>
<td>(2.4)</td>
<td>(2.6)</td>
<td>(2.4)</td>
</tr>
<tr>
<td>$227 offer</td>
<td>7.3***</td>
<td>6.6**</td>
<td>7.2**</td>
<td>7.7***</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(2.8)</td>
<td>(2.8)</td>
<td>(2.7)</td>
</tr>
<tr>
<td>$171 offer / T2: Medium subsidy—57% discount</td>
<td>18.5***</td>
<td>16.0***</td>
<td>16.6***</td>
<td>17.1***</td>
</tr>
<tr>
<td></td>
<td>(2.7)</td>
<td>(2.7)</td>
<td>(2.9)</td>
<td>(2.7)</td>
</tr>
<tr>
<td>$114 offer</td>
<td>19.7***</td>
<td>18.4***</td>
<td>15.0***</td>
<td>20.0***</td>
</tr>
<tr>
<td></td>
<td>(2.9)</td>
<td>(3.2)</td>
<td>(2.9)</td>
<td>(2.9)</td>
</tr>
<tr>
<td>Free offer / T3: High subsidy—100% discount</td>
<td>87.5***</td>
<td>89.6***</td>
<td>89.6***</td>
<td>89.3***</td>
</tr>
<tr>
<td></td>
<td>(2.2)</td>
<td>(2.3)</td>
<td>(2.1)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>Interacted variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.9</td>
<td>5.6</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.3)</td>
<td>(4.8)</td>
<td>(5.9)</td>
<td></td>
</tr>
<tr>
<td>$853 offer × interacted variable</td>
<td>-9.0</td>
<td>-4.1</td>
<td>-18.0***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.4)</td>
<td>(7.6)</td>
<td>(6.1)</td>
<td></td>
</tr>
<tr>
<td>$284 offer × interacted variable</td>
<td>6.4</td>
<td>5.5</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.5)</td>
<td>(7.3)</td>
<td>(8.8)</td>
<td></td>
</tr>
<tr>
<td>$227 offer × interacted variable</td>
<td>4.6</td>
<td>0.6</td>
<td>-2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.5)</td>
<td>(7.4)</td>
<td>(8.5)</td>
<td></td>
</tr>
<tr>
<td>$171 offer × interacted variable</td>
<td>15.7*</td>
<td>9.9</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.3)</td>
<td>(7.8)</td>
<td>(9.9)</td>
<td></td>
</tr>
<tr>
<td>$114 offer × interacted variable</td>
<td>8.5</td>
<td>25.1***</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.5)</td>
<td>(8.4)</td>
<td>(9.2)</td>
<td></td>
</tr>
<tr>
<td>Free offer × interacted variable</td>
<td>-11.5*</td>
<td>-15.1**</td>
<td>-17.2**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.9)</td>
<td>(5.9)</td>
<td>(6.6)</td>
<td></td>
</tr>
<tr>
<td>Take-up in status quo (i.e., $398) group</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>Observations</td>
<td>2,157</td>
<td>2,157</td>
<td>2,157</td>
<td>2,157</td>
</tr>
<tr>
<td>R^2</td>
<td>0.35</td>
<td>0.36</td>
<td>0.36</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is an indicator (multiplied by 100) for whether the household accepted the hypothetical offer if required to complete the payment in six weeks. Pre-specified household covariates include the age of the household head, indicators for whether the household respondent attended secondary school, is a senior citizen, is not primarily a farmer, is employed, and has a bank account, an indicator for whether the household has high-quality walls, and the number of chickens (a measure of assets) owned by the household. Pre-specified community covariates include indicators for the county, market status, whether the transformer was funded and installed early on (between 2008 and 2010), community electrification rate at baseline, and community population. Asterisks indicate coefficient statistical significance level (2-tailed): * P < 0.10; ** P < 0.05; *** P < 0.01.
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$853 offer</td>
<td>90.3***</td>
<td>91.4***</td>
</tr>
<tr>
<td></td>
<td>(5.2)</td>
<td>(5.5)</td>
</tr>
<tr>
<td>$398 offer / Existing fixed price</td>
<td>72.9***</td>
<td>75.9***</td>
</tr>
<tr>
<td></td>
<td>(4.1)</td>
<td>(4.1)</td>
</tr>
<tr>
<td>$284 offer / T1: Low subsidy—29% discount</td>
<td>70.3***</td>
<td>72.2***</td>
</tr>
<tr>
<td></td>
<td>(3.3)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>$227 offer</td>
<td>65.9***</td>
<td>68.2***</td>
</tr>
<tr>
<td></td>
<td>(3.7)</td>
<td>(3.8)</td>
</tr>
<tr>
<td>$171 offer / T2: Medium subsidy—57% discount</td>
<td>52.7***</td>
<td>55.0***</td>
</tr>
<tr>
<td></td>
<td>(3.3)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>$114 offer</td>
<td>52.9***</td>
<td>54.2***</td>
</tr>
<tr>
<td></td>
<td>(3.3)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Senior citizen=1</td>
<td>-3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.2)</td>
<td></td>
</tr>
<tr>
<td>Attended secondary school=1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.1)</td>
<td></td>
</tr>
<tr>
<td>Not a farmer=1</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.2)</td>
<td></td>
</tr>
<tr>
<td>Employed=1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.9)</td>
<td></td>
</tr>
<tr>
<td>Has bank account=1</td>
<td>-10.7****</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.2)</td>
<td></td>
</tr>
<tr>
<td>Number of household members</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td></td>
</tr>
<tr>
<td>High-quality walls=1</td>
<td>-12.5***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.3)</td>
<td></td>
</tr>
<tr>
<td>Number of chickens=1</td>
<td>-0.2*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>52.4</td>
<td>52.5</td>
</tr>
<tr>
<td>Observations</td>
<td>1,184</td>
<td>1,159</td>
</tr>
<tr>
<td>$R^2</td>
<td>0.25</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Notes: In both columns, the dependent variable is an indicator (multiplied by 100) for whether the household first accepted the hypothetical offer (i.e. randomly assigned price) to connect to the grid, and then declined the hypothetical offer if required to complete the payment in six weeks. Robust standard errors clustered at the community level in parentheses. Asterisks indicate coefficient statistical significance level (2-tailed): * $P < 0.10$; ** $P < 0.05$; *** $P < 0.01$.
Table B12—Summary of randomly-assigned, hypothetical credit offers

<table>
<thead>
<tr>
<th>Offer</th>
<th>Months</th>
<th>Upfront</th>
<th>Monthly</th>
<th>NPV at discount rate of</th>
<th>Take-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5%</td>
<td>15%</td>
</tr>
<tr>
<td>1</td>
<td>36</td>
<td>79.60</td>
<td>11.84</td>
<td>475.23</td>
<td>425.67</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>59.70</td>
<td>12.58</td>
<td>480.03</td>
<td>427.38</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>39.80</td>
<td>13.32</td>
<td>484.83</td>
<td>429.09</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>59.70</td>
<td>13.45</td>
<td>509.29</td>
<td>452.98</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>59.70</td>
<td>17.22</td>
<td>452.57</td>
<td>418.07</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>127.93</td>
<td>26.94</td>
<td>1028.26</td>
<td>915.48</td>
</tr>
<tr>
<td>Offer 1 to 5 (average)</td>
<td>59.70</td>
<td>13.68</td>
<td>480.39</td>
<td>430.64</td>
<td>391.89</td>
</tr>
</tbody>
</table>

Notes: During the baseline survey, each household was randomly assigned a hypothetical credit offer consisting of an upfront payment (ranging from $39.80 to $79.60), a monthly payment (ranging from $11.84 to $17.22), and a contract length (either 24 or 36 months). Respondents were first asked whether they would accept the offer, and then asked whether they would still accept if required to complete the upfront payment in six weeks. Figure 5 plots the net present value and take-up results corresponding to offer 6 and the average for offers 1 to 5 (which are very similar), assuming a discount rate of 15 percent.
Table B13—Predicting cost (C), consumer surplus (CS), and net welfare (NW) per household using different approaches and assumptions

<table>
<thead>
<tr>
<th>Experimental approach</th>
<th>Alternative approach</th>
<th>Key assumption(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C CS NW</td>
<td>C CS NW</td>
<td></td>
</tr>
<tr>
<td>Main estimates</td>
<td>658 147 -511</td>
<td>Income growth of 3 percent per annum over 30 years (based on demand curves in figure 2, panel B); Electricity consumption growth of 10 percent per annum over 30 years (see table 4, column 2, row 3).</td>
</tr>
<tr>
<td>a) Income growth</td>
<td>- +139 -</td>
<td>Income growth of 3 percent per annum over 30 years (based on demand curves in figure 2, panel B); Electricity consumption growth of 10 percent per annum over 30 years (see table 4, column 2, row 3).</td>
</tr>
<tr>
<td>(experimental approach); Electricity consumption growth (alternative approach)</td>
<td>- - +182</td>
<td></td>
</tr>
<tr>
<td>b) No credit constraints for grid connections</td>
<td>- +301 -</td>
<td>Stated WTP without time constraints (see figure 5)</td>
</tr>
<tr>
<td>c) No transformer breakdowns</td>
<td>- +33 +19</td>
<td>Reduce likelihood of transformer breakdowns from 5.4 to 0 percent (see appendix table B10).</td>
</tr>
<tr>
<td>d) No grid connection delays</td>
<td>- +46 +26</td>
<td>Reduce waiting period from 188 to 0 days (see appendix figure A1).</td>
</tr>
<tr>
<td>e) No construction cost leakage</td>
<td>-140 -</td>
<td>Decrease total construction costs by 21.3 percent (see appendix table B8).</td>
</tr>
<tr>
<td>f) Including baseline connected households</td>
<td>- +37 +53</td>
<td>Net impact of incorporating a weighted average consumer surplus (based on table 4, column 3, row 3).</td>
</tr>
<tr>
<td>Ideal scenario</td>
<td>518 702 184 426 -91</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Main estimates of C, CS, and NW correspond to the values shown in figure 4, panel B (for the experimental approach), and table 4, column 1, row 3 (for the alternative approach). Row f incorporates consumer surplus from baseline connected households (roughly 5.5 percent of community households). Specifically, these values reflect the net impact on the bottom row of incorporating a weighted average consumer surplus, using the estimate in table 4, column 3, row 3 as a proxy for the consumer surplus from baseline connected households.
Appendix C

This appendix contains the two pre-analysis plans referenced in the main text. The pre-analysis plans are also available at http://www.socialscienceregistry.org/trials/350.
Pre-analysis plan A

“The demand for and costs of supplying grid connections in Kenya”

AEA RCT Title: “Evaluation of Mass Electricity Connections in Kenya”

RCT ID: AEARCTR-0000350

Principal Investigators: Eric Brewer, Kenneth Lee, Edward Miguel, and Catherine Wolfram

Date: 30 July 2014

Summary: This document outlines the plan for analyzing the demand for and costs of supplying household electricity connections in rural Kenya. The proposed analysis will take advantage of a field experiment in which randomly selected clusters of rural households were offered an opportunity to connect to the national grid at subsidized prices. This pre-analysis plan outlines the regression specifications, outcome variables, and covariates that will be considered as part of this analysis. We anticipate that we will carry out additional analyses beyond those included in this plan. This document is therefore not meant to be comprehensive. The overall research project will also include an impact evaluation of electricity connections that will be carried out in 2015 or 2016, upon completion of the endline survey round. For this portion of the project, we will register an additional pre-analysis plan at a later date, in either 2015 or 2016.
I. Introduction

Electrification has long been a benchmark of development, yet over two-thirds of the population of Sub-Saharan Africa lives without access to electricity. In June 2013, President Obama announced the Power Africa initiative, making energy access a top priority among six partner countries in Africa, including Kenya. In light of this initiative, and others being implemented by the World Bank and the UN General Assembly, there is considerable need for rigorous research to inform the effective scale-up of energy access programs in developing countries.

In this project, we have identified a unique opportunity to increase access to on-grid energy in Kenya. Since 2007, Kenya’s Rural Electrification Authority (REA) has rapidly expanded the national grid, installing electricity distribution lines and transformers across many of the country’s rural areas. Connectivity, however, remains low. While roughly three-quarters of the population is believed to live within 1.2 kilometers of a low voltage line, the official electrification rate is under 30%. In related work, we find that in regions that are technically covered by the grid, half of the unconnected households are no more than 200 meters from a low-voltage line.

We believe that the primary barrier to connecting these “under grid” households is the prohibitively high connection fee faced by rural households. The current connection price of KSh 35,000 ($412) may not be affordable for poor, rural households in a country where the GNI per capita (PPP) is $1,730. Despite this fact, Kenya’s monopoly distribution company, Kenya Power, has recently proposed increasing the price to KSh 75,000 due to cost considerations.1

In general, little is known about the demand for electricity in rural areas, both initially and over time. Specifically, how many more households would opt to connect if the fee were,

1In March 2014, Kenya Power, the national utility, stated that it will continue to charge eligible customers KSh 35,000 for single-phase power connections, as long as the cost of connection does not exceed KSh 135,000 ($1,588), inclusive of VAT.
for example, KSh 25,000 ($294), KSh 15,000 ($176), or even KSh 0? How much power
would households consume if they did connect, now and in the future? And once house-
holds are connected, do the social and economic benefits of access to modern energy in
rural areas outweigh the costs?

In the coming years, REA will explore the feasibility of initiating a long-term, last-mile
household connection program involving discounted connection fees for households and
small businesses located close to existing REA electricity transformers. In order to evalu-
ate this potential program, we have partnered with REA to conduct a randomized evalu-
ation of grid connections involving roughly 2,500 households in rural Western Kenya.

The principal objectives of this study are twofold:

1. To trace out the demand curve for electricity connections, and in addition, to esti-
 mate the economies of scale in costs associated with spatially grouping connections
together.

2. To measure the social and economic impacts of electrification, including schooling
 outcomes for children, energy use, income and employment, among other outcomes.

This pre-analysis plan outlines our strategy to address the first objective. The analysis on
the impacts of the intervention will be carried out in 2015 and 2016, upon completion of
the midline and endline survey rounds. The pre-analysis plan for the second stage of this
project will therefore be registered at a later date, in either 2015 or 2016.

The remainder of this document is organized as follows. Section II provides a brief back-
ground on the existing literature on the demand for electricity connections. Section III
provides a brief overview of the experimental design. Finally, Sections IV and V outline
the main estimating equations that will be used in our analysis of both the demand for
and costs of supplying electricity connections.
II. Brief literature review

In recent years, there has been a growing literature examining the demand for electricity connections in developing countries. The methods utilized in these studies range from contingent valuation approaches (see, e.g., Abdullah and Jeanty 2011) to randomized encouragement designs, where households are offered vouchers or subsidies to connect to the electricity network at a discounted price. Bernard and Torero (2013), for example, distribute two levels of randomized vouchers (10% and 20% discounts) to encourage household grid connections in Ethiopia, where the connection price ranges from $50 to $100, depending on the household’s distance to the nearest electrical pole. Similarly, Barron and Torero (2014) utilize two levels of randomized vouchers (20% and 50% discounts) in El Salvador, where the connection price (in the study setting) is $100.

There is also an engineering literature simulating the costs of extending the grid to rural areas in developing countries. Parshall et al. (2009), for example, apply a spatial electricity planning model to Kenya and find that “under most geographic conditions, extension of the national grid is less costly than off-grid options.” Zvoleff et al. (2009) examine the costs associated with extending the grid across various types of settlement patterns, demonstrating the potential for non-linearities in costs.

While our study is closely related to the earlier randomized encouragement designs, our objective is to evaluate the demand for electricity connections at randomized prices, as well as provide experimental evidence on the cost economies of scale associated with grouping connections together spatially.

III. Overview of project

1. Experimental design

Our experiment takes place across 150 “transformer communities” in Western Kenya. Each transformer community is defined as the group of all households located within 600 meters of a central electricity distribution transformer. In Kenya, all households within
600 meters of a transformer are eligible to apply for an electricity connection. In each transformer community, we have enrolled roughly 15 randomly selected unconnected households. In total, our study will involve roughly 2,250 unconnected households.

On 23 April 2014, our sample of transformer communities was randomly divided into treatment and control groups of equal size (75 treatment, 75 control). Each of the 75 treatment communities were then randomly assigned to one of three treatment arms (i.e. subsidy groups). These subsidies were designed to allow households to connect to the national power grid at relatively low prices (compared to the current connection price of KSh 35,000 or $412). In addition, each household accepting an offer to be connected as part of the study would receive a basic household wiring solution ("ready-board") at no additional cost. Each ready-board provides a single light bulb socket, two power outlets, and two miniature circuit breakers (MCBs).

The treatment and control groups are characterized as follows:

A. High-value treatment arm
25 communities. KSh 35,000 ($412) subsidy and KSh 0 ($0) effective price. This represents a 100% discount on the current price.

B. Medium-value treatment arm:
25 communities. KSh 20,000 ($235) subsidy and KSh 15,000 ($176) effective price. This represents a 57% discount on the current price.

C. Low-value treatment arm:
25 communities. KSh 10,000 ($118) subsidy and KSh 25,000 ($294) effective price. This represents a 29% discount on the current price.

D. Control group:
75 communities. No subsidy and KSh 35,000 ($412) effective price. There is no discount offered to households in the control group.
Within each treatment community, all enrolled and unconnected households would receive the same subsidy offer. After receiving the subsidy offer, treatment households would be given eight weeks to accept the offer and deliver the required payment to REA. At the end of this eight-week period, field enumerators would visit each household to verify that the required payment has been made to REA. Electricity connections are delivered once these verifications are complete. The collection of take-up responses comprises the main data set for the analyses outlined in this pre-analysis plan.

Once payments are verified, REA would hire its own contractors to deliver the connections within a period of four to six weeks. In order to economize on its own delivery costs, REA would connect all of the required connections in each community at the same time. REA would also group anywhere from two to four neighboring communities together, in order to further economize on transportation costs.

The first set of randomized offers were delivered in early-May and expired in early-July. The second set of randomized offers will be delivered in late-July and will expire in late-September. Our field enumerators began collecting take-up data on 4 July 2014. The full round of data collection will continue through the end of October 2014. As a result, it is expected that the final version of the data set for this analysis will be available in November 2014.

Data collection began before this document was uploaded to the AEA RCT registry website. In anticipation of this delay, we posted a document to our registered trial on 2 July 2014 titled “A note on pre-analysis plans” in order to describe how the investigators would be prohibited from accessing any data until a pre-analysis plan had been uploaded to the registry website.

2. Power calculations
At the beginning of this project, we knew little about the demand for electricity connections at various prices. We therefore made a set of assumptions on how take-up would
vary at four different levels of prices. Taking into account our budgetary constraints, we
designed the study to detect differences in take-up at these pricing levels, based on our
set of ex-ante assumptions. In addition, we took into consideration the level of take-up
that we would need in our future analysis on the social and economic impacts of electri-
ication. These assumptions are outlined in Table 1.

Table 1: Ex-ante take-up assumptions

<table>
<thead>
<tr>
<th>Communities</th>
<th>Households (n)</th>
<th>Assumed take-up range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. High-value arm ("High")</td>
<td>25</td>
<td>375</td>
</tr>
<tr>
<td>B. Medium-value arm ("Medium")</td>
<td>25</td>
<td>375</td>
</tr>
<tr>
<td>C. Low-value arm ("Low")</td>
<td>25</td>
<td>375</td>
</tr>
<tr>
<td>D. Control group ("Control")</td>
<td>75</td>
<td>1,125</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>2,250</td>
</tr>
</tbody>
</table>

Table 2: Communities required in each arm to detect differences with 80% power

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Description</th>
<th>Required size of each arm</th>
<th>Actual size of each arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A vs. B</td>
<td>High vs. Med.</td>
<td>3 - 5</td>
<td>25</td>
</tr>
<tr>
<td>A vs. C</td>
<td>High vs. Low</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>A vs. D</td>
<td>High vs. Control</td>
<td>1 - 2</td>
<td>25 (High), 75 (Control)</td>
</tr>
<tr>
<td>B vs. C</td>
<td>Med. vs. Low</td>
<td>6 - 27</td>
<td>25</td>
</tr>
<tr>
<td>B vs. D</td>
<td>Med. vs. Control</td>
<td>3 - 5</td>
<td>25 (Med), 75 (Control)</td>
</tr>
<tr>
<td>C vs. D</td>
<td>Low vs. Control</td>
<td>6 - 26</td>
<td>25 (Low), 75 (Control)</td>
</tr>
</tbody>
</table>

In Table 2, we report the total number of communities required to detect differences
(α = 0.05) between groups with 80% power. For example, in the comparison of groups
B (medium-value treatment arm) and C (low-value treatment arm), we expect that we
will need 6 to 27 communities in each treatment arm (the actual size of each arm is 25
communities).\(^2\) We assume an intracluster correlation coefficient of 0.1 within commu-
nities. In our design, we included a large number of high-value treatment communities
in order to increase our statistical power to estimate the social and economic impacts of
electrification (our second objective). Based on these assumptions, we expect that we are

\(^2\)Since we had assumed a range of values for our assumptions on take-up, we report a range of values for the required size of each
arm. For example, if take-up is 50% and 15% for groups B and C, respectively, we would require only 6 communities in each arm.
However, if take-up is 40% and 25% for groups B and C, respectively, we would require 27 communities.
sufficiently powered, based on our ex-ante assumptions on take-up.

3. Data
This analysis will utilize four data sets: (1) Data on household take-up decisions; (2) Data on actual costs of supplying household connections; (3) Data on community-level characteristics; and (4) Household-level baseline survey data from the Living Standards Kenya (LSK) survey. The survey instrument is included in the Appendix.

IV. Analysis plan - Demand
The primary objective of this analysis is to estimate the demand for electricity connections, or in other words, the willingness of individual households to pay for a quoted price of an electricity connection. We will follow the procedure: (1) Estimate a non-parametric regression of household take-up on various subsidy levels. (2) Test for linearity: If we cannot reject linearity, we will estimate a linear regression of take-up on the effective connection price. If we can reject linearity, we will focus on the non-parametric estimation for the remainder of the analysis. (3) Estimate heterogeneous effects. (4) Plot the demand curve and compare these results to our contingent valuation results.

1. Non-parametric regression
We will begin by estimating the main equation:

\[y_{ic} = \alpha_0 + \alpha_1 T_{c}^{\text{low}} + \alpha_2 T_{c}^{\text{mid}} + \alpha_3 T_{c}^{\text{high}} + X_{c}'\gamma + \epsilon_{ic} \]

where \(y_{ic} \) is a binary variable reflecting the take-up decision for household \(i \) in transformer community \(c \).\(^3\) The binary variables \(T_{c}^{\text{low}}, T_{c}^{\text{mid}}, \) and \(T_{c}^{\text{high}} \) indicate whether community \(c \) was randomly assigned into the low-value, medium-value, or high-value treatment arms, respectively. Following Bruhn and McKenzie (2009), we include a vector of community-level characteristics, \(X_{c} \), containing the variables used for stratification dur-

\(^3\)Refer to Section IV Part 3 for further details on the dependent variable.
ing randomization. Standard errors will be clustered at the community level.

Equation (1) will be the primary equation that we estimate in our demand-side analysis. As a robustness check, we will also estimate the equation:

\[y_{ic} = \alpha_0 + \alpha_1 T_{lc}^{low} + \alpha_2 T_{lc}^{mid} + \alpha_3 T_{lc}^{high} + X_c' \gamma + X_{ic}' \lambda + \epsilon_{ic} \] (2)

where \(X_{ic} \) is a vector of household-level characteristics. \(X_{ic} \) will include standard control variables that not only have predictive effects but may also serve as sources of heterogeneity in take-up.

We will also assess whether treatment and control households are balanced at baseline in terms of household characteristics. In addition to \(X_{ic} \), we may also choose to control for any covariates that are both unbalanced at baseline and relevant for electricity take-up.

In equations (1) and (2), the baseline (i.e. \(T_{lc}^{low} = T_{lc}^{mid} = T_{lc}^{high} = 0 \)) estimates household take-up under the status-quo pricing policy (i.e. take-up when the price of an electricity connection faced by the rural household is KSh 35,000). \(\alpha_1, \alpha_2, \) and \(\alpha_3 \) capture the incremental effects (over the baseline) on take-up of the low-value, medium-value and high-value subsidies, respectively. Since the randomized subsidies will lower the effective price of an electricity connection, we expect that our experiment will result in positive and statistically significant \(\alpha \)-coefficients.

2. Testing for linearity
We are interested in testing for linearity in equation (1). We will use an \(F \)-test to assess the null hypothesis:

\[H_0: \frac{(\alpha_3 - \alpha_2)}{15} = \frac{(\alpha_2 - \alpha_1)}{10} = \frac{(\alpha_1 - \alpha_0)}{10} \]

\(^4\)Refer to Section IV Part 4 for further details on the components of \(X_c \).
\(^5\)Refer to Section IV Part 4 for further details on the components of \(X_{ic} \).
against the alternative hypothesis that the slope in between the various take-up points is unequal. If we cannot reject linearity in an F-test, we will also estimate the equation:

$$y_{ic} = \beta_0 + \beta_1 p_c + X_{ic}' \gamma + \epsilon_{ic}$$

(3)

where p_c is the effective price of an electricity connection faced by households in community c. Standard errors will again be clustered at the community level. As in equation (2), we will similarly check robustness by including the vector X_{ic}.

If we can reject linearity in an F-test, it will be of interest to understand how take-up changes when moving across different subsidy levels. In a similar experiment conducted in El Salvador, Barron and Torero (2014) find that the effects of a relatively low subsidy (20%) and a relatively high subsidy (50%) are similar. This is taken to suggest that either the demand for connections is inelastic (in the price range offered), or that the subsidies affect take-up through alternative channels. Given this unusual result, we will focus on equation (1) and test the hypothesis that:

$$H_0: \alpha_1 = \alpha_2$$

against the alternative that the higher-value subsidy has a larger effect on take-up compared to the lower-value subsidy (i.e. $H_1: \alpha_2 > \alpha_1$). We will conduct a similar test for each of the pairwise combinations listed in Table 2.

3. Two measures of take-up

We may find that some of the treatment households decided that they would like to accept the offer, but are unable to complete the full payment within the eight-week period. We may therefore have two measures of take-up:

6 For example, in a high-subsidy treatment community, the subsidy amount is equal to the current price of an electricity connection and the effective price faced by households is 0 KSh (i.e. $p_c = 0$)

7 For example, Barron and Torero propose that a subsidy may raise awareness that electrification is possible, resulting in higher take-up.
1. Actual take-up (y_{1ic}): Binary variable indicating whether treatment household ic accepted the offer and completed the required payment within eight weeks.

2. Intended take-up (y_{2ic}): Binary variable indicating whether treatment household ic intended to accept the offer, and began to make payments, but was unable to complete the full payment within eight weeks.

Our primary outcome of interest, however, will be the actual take-up captured by y_{1ic}.

4. Covariate vectors X_c and X_{ic}

There are two sets of covariates in equations (1), (2), and (3). X_c is a vector of community-level characteristics and X_{ic}, which will mainly be used in robustness checks, is a vector of household-level characteristics. X_c will primarily include the stratification variables that were used during randomization. The list of X_c variables will include:

1. County indicator: Binary variable indicating whether community c is in Busia or Siaya. This was used as a stratification variable during randomization.

2. Market status: Binary variable indicating whether the total number of businesses in community c is strictly greater than the community-level mean across the entire sample. We use this definition to define which communities could be classified as “markets” relative to the others. This was used as a stratification variable during randomization.

3. Transformer funding year: Binary variable indicating whether the electricity transformer in community c was funded “early” (i.e. in either 2008-09 or 2009-10). This was used as a stratification variable during randomization.

4. Electrification rate: Residential electrification rate in community c.

5. Community population: Estimated number of people living in community c.

X_{ic} will include a set of household-level variables that not only have predictive effects but may also serve as sources of heterogeneity in take-up. The survey from which we will obtain this data is attached in the Appendix. For example, it is possible that take-up will vary depending on household size, household wealth, or the education level and employment type of the survey respondent. In the majority of cases, the survey respondent

8The collection of this data is described in further detail in Lee et al. (2014).
is either the household head or the spouse of the household head. The list of X_{ic} variables will include (LSK question numbers in parentheses):

1. Household size ($a1$): Number of people living in household ic.

2. Household wealth indicator - Walling material ($c1c$): Binary variable indicating whether the walls of household ic can be considered “high quality” (i.e. made of brick, cement, or stone).

3. Household wealth indicator - Chickens ($d9a$): Number of chickens owned by household ic.

4. Age of respondent in years ($a4c$)

5. Education of respondent ($a5b$): Binary variable indicating whether respondent ic has completed some level of secondary education.

6. Farming as primary occupation of respondent ($a5c$): Binary variable indicating whether the primary occupation of respondent ic is farming.

7. Access to financial services of respondent ($g1a$): Binary variable indicating whether respondent ic uses a bank account.

8. Business or self employment activity of respondent ($e1$): Binary variable indicating whether the respondent (or the respondent’s spouse) in household ic engages in any business or self-employment activities.

9. Senior household ($a4c$): Binary variable indicating whether respondent ic is over 65 years old.

5. Heterogeneous effects
We are interested in understanding how take-up varies across several important socio-economic dimensions. For example, will take-up depend on community characteristics? Will it be higher for households that are located in more electrified communities or in market centers? Alternatively, will take-up depend on individual characteristics? Will it be higher for the more educated households, or those that are engaged in more “entrepreneurial activities”? In order to answer these questions, we will estimate heterogeneous effects along a number of dimensions, captured in the vectors X_c and W_{ic} (which is a subset of X_{ic}):
1. County indicator \((X_c)\)
2. Market status \((X_c)\)
3. Transformer funding year \((X_c)\)
4. Electrification rate \((X_c)\)
5. Community population \((X_c)\)
6. Household wealth indicator - Walls \((W_{ic})\)
7. Education of respondent \((W_{ic})\)
8. Farming as primary occupation of respondent \((W_{ic})\)
9. Access to financial services of respondent \((W_{ic})\)
10. Business or self employment activity of respondent \((W_{ic})\)
11. Senior household \((W_{ic})\)

We will estimate heterogeneous effects by adding interactions between the treatment variables and the vectors \(X_c\) and \(W_{ic}\) to equations (1), (2), and (3). We will also carry out additional analyses, depending on the types of heterogeneous effects that we estimate. For example, if we find that take-up is higher in communities with higher electrification rates, we may explore whether there are any “bandwagon” effects, as in Bernard and Torero (2013), by focusing on the interaction between the treatment and community electrification variables. Since we do not know the nature of these heterogeneous treatment effects, it is not possible to fully specify all of the potential analyses in this document.

6. Comparison of contingent valuation to revealed preference results

During the LSK survey round, conducted between February and July 2014, we asked respondents from unconnected households whether they would be hypothetically willing to connect to the national grid at a randomly selected price (see questions \(f16b\) and \(f16c\) in Appendix). These amounts were randomly drawn from the following set of prices:

\[
\text{Hypothetical Price} \in \{0, 10000, 15000, 20000, 25000, 35000, 75000\}
\]
This question was followed by an additional hypothetical question asking the respondent whether they would accept an offer at this price if they were given six weeks to complete the payment.\(^9\)

In comparison, there were four effective prices (randomized at the community-level) in our experimental design:

\[
\text{Effective Price} \in \{0, 15000, 25000, 35000\}
\]

By making comparisons between these two measures of take-up at similar levels of prices, we will test whether we could reject equal demand (in terms of contingent valuation and revealed preferences). In addition, we will plot various demand curves, with take-up plotted along one axis and the effective (or hypothetical) price plotted along the other. Finally, we will run contingent valuation regressions using the same specifications and covariates as those described in Section IV, Parts 1, 2, and 6.

V. Analysis plan - Costs

The secondary objective of this analysis is to characterize how connection costs decrease with the number of neighboring households that choose to connect at the same time.\(^10\)

1. Potential for economies of scale in costs

Given that rural households are often located in remote areas, the cost of supplying an electricity connection to an individual household can be very high. This is due to the high cost of transportation and the necessity of building additional low-voltage lines. However, significant economies of scale could be achieved by connecting multiple households

\(^9\)In our experimental design, treatment households were given eight weeks to complete the payment. This change was made at the request of REA, after we had already launched our baseline survey round. In this hypothetical question, we do not believe that providing an additional two weeks would have influenced the responses.

\(^10\)We make a distinction between the \textit{price} of an electricity connection, which is the fixed price of an electricity connection faced by households, and the \textit{cost} of an electricity connection, which is the physical cost of supplying the electricity connection faced by the utilities.
at the same time. In a related paper, we use the current costs of materials to estimate that the incremental cost of supplying an electricity connection to a single household 200 and 100 meters away from a low-voltage line is $1,940 and $1,058, respectively, inclusive of material and transportation costs, as well as a 25% contractor markup (Lee et al. 2014).

While this cost is extremely high, it is desirable from the perspective of the supplier to connect spatially-clustered groups of households at the same time. For example, when two neighboring households are connected along the same length of line, the above per household costs are projected to fall by roughly 47%, to $1,021 and $580, respectively.

2. IV approach to estimating economies of scale in costs

In our experimental design, randomized subsidies are assigned at the community level. In addition, there are three levels of subsidies. We expect that different levels of subsidies—low, medium, and high—will create variation in the number of households that choose to apply for electricity at the same time. For example, larger numbers of applicants should be observed in the high-subsidy communities (where households pay 0 KSh), and smaller numbers of applicants should be observed in the low-subsidy communities (where households pay 25,000 KSh).

We can therefore estimate the community-level construction cost, Γ_c, as a function of the number of connected households in the community, M_c, using the randomized community-level subsidy amounts, Z_{c}^{low}, Z_{c}^{mid}, and Z_{c}^{high}, as instruments for M_c. In order to allow for the possibility of non-linearities in costs, we will include higher-order polynomials in our estimation of Γ_c. Specifically, we will estimate an instrumental variables regression using the equations:

$$M_c = \delta_0 + \delta_1 Z_{c}^{\text{low}} + \delta_2 Z_{c}^{\text{mid}} + \delta_3 Z_{c}^{\text{high}} + V'_c \mu + \nu_c$$

11Refer to Section V Part 3 for additional information on how we plan to construct the variable Γ_c.

\[\text{(4)}\]
\[
M_c^2 = \delta_0 + \delta_1 Z_{c \text{low}} + \delta_2 Z_{c \text{mid}} + \delta_3 Z_{c \text{high}} + V'_{c \mu} + \nu_c \quad (5)
\]
\[
M_c^3 = \delta_0 + \delta_1 Z_{c \text{low}} + \delta_2 Z_{c \text{mid}} + \delta_3 Z_{c \text{high}} + V'_{c \mu} + \nu_c \quad (6)
\]
\[
\Gamma_c = \pi_0 + \pi_1 M_c + \pi_2 M_c^2 + \pi_3 M_c^3 + V'_{c \mu} + \eta_c \quad (7)
\]

where the first-stage equations (4), (5), and (6) estimate the effects of the treatment variables on the number of applicants, and the second-stage equation (7) estimates the effect of higher-order polynomials of the number of connected households on the community-level cost. Since there are multiple endogeneous variables in this framework, equations (4), (5), and (6) will be estimated jointly. \(V_c\) is a vector of community-level characteristics that will be relevant in this regression.\(^{12}\) \(\nu_c\) and \(\eta_c\) are error terms.

We will take the derivative of our estimates in equation (7) in order to uncover different points along the marginal cost curve. We will plot these points to sketch out a marginal cost curve, with the number of connected households on the horizontal axis and the marginal cost on the vertical axis. We will also expand equations (4) through (7) by interacting the \(Z_c\) and \(M_c\) variables with the \(V_c\) vector to explore any potential heterogeneous effects.

We should note that this analysis is highly speculative. We have not carried out any power calculations because we do not have baseline data on the community-level costs of household electrification. Furthermore, our ability to identify the desired effects will depend on the specified functional forms. If we estimate linear relationships in both stages, we will focus only on estimating equation (4) in the first-stage and substitute equation (7) with the equation:

\[
\Gamma_c = \pi_0 + \pi_1 M_c + V'_{c \mu} + \eta_c \quad (8)
\]

\(^{12}\)Refer to Section V Part 4 for further details on the components of \(V_c\).
In addition, we may pursue additional analyses, depending on the nature of the cost data that we eventually receive.

3. Constructing the variable Γ_c

Through our partnership with REA, we will collect actual cost invoices related to the connections that are delivered as a part of this study. Specifically, we will be provided with an itemized list of costs (e.g. cost of low-voltage lines, cost of service lines, cost of transportation etc.), as well as the design drawings detailing the planned locations of electricity poles. Using these data, we will work with REA to determine the total construction cost for each community.

4. Covariate vector V_c

V_c will include variables that should have an impact on construction costs, including all of the community-level variables in X_c, in addition to a community distance and land gradient variables. The list of V_c variables will include:

1. County indicator
2. Market status: This may approximate community density or the pre-existing coverage of the local low-voltage network.
3. Transformer funding year
4. Electrification rate: This should approximate the pre-existing coverage of the local low-voltage network. Higher electrification rates (and more local low-voltage network coverage) should decrease construction costs.
5. Community population
6. Distance from REA warehouse: Travel distance (in kilometers) between community c and the primary REA warehouse located in Kisumu where the construction materials are stored. Longer travel distances should increase construction costs.
7. Terrain or land gradient: We will use two different measures of terrain or land gradient. Dinkelman (2011) identifies land gradient as a major factor contributing to the costs of electrification. In flatter areas, the soil tends to be softer, making it cheaper to lay power lines and erect transmission poles. Our primary community-level land gradient variable will therefore be constructed using the same methodology as Dinkelman (2011). Specifically, we will use the 90-meter Shuttle Radar Topog-
raphy Mission (SRTM) Global Digital Elevation Model (available at www.landcover.org) to access elevation data and then construct measures of the average land gradient for each transformer community.13 Our secondary community-level land gradient variable will be the variance in the distribution of altitudes collected across the entire population of geo-tagged buildings for each transformer community.14

References

13Each transformer community is defined as all of the buildings within a 600 meter radius of a central electricity distribution transformer, as defined in Lee et al. (2014).

14Usage of this secondary definition of land gradient will depend on whether we can verify that our altitude records (taken using the GPS application on Android tablets) are relatively accurate.
Pre-analysis plan B

“The Economic and Social Impacts of Electrification: Evidence from Kenya”

AEA RCT Title: “Evaluation of Mass Electricity Connections in Kenya”
RCT ID: AEARCTR-0000350
Principal Investigators: Kenneth Lee, Edward Miguel, and Catherine Wolfram (University of California, Berkeley)
Date: 15 September 2016

Summary: This document outlines the plan for analyzing a dataset consisting of information on the living standards of roughly 4,000 households in Western Kenya, including nearly 500 households that previously benefited from a randomized household electrification program. The goal of this study is to estimate the economic and social impacts of household electricity connections. This document lays out the main regression specifications and outcome variable definitions that we intend to follow. However, we anticipate that we will carry out additional analyses beyond those included in this document. This document is therefore not meant to be comprehensive or to preclude additional analyses.

1 We are grateful to Susanna Berkouwer for assistance in preparing this document. This research is supported by the Berkeley Energy and Climate Institute, the Blum Center for Developing Economies, the Center for Effective Global Action, the Development Impact Lab (USAID Cooperative Agreements AID-OAA-A-13-00002 and AIDOAA-A-12-00011, part of the USAID Higher Education Solutions Network), the International Growth Centre, the U.C. Center for Energy and Environmental Economics, the Weiss Family Program Fund for Research in Development Economics, the World Bank, and a private donor. Corresponding author: Edward Miguel (emiguel@berkeley.edu).
1. Introduction

1.1 Summary

Universal access to modern energy has become a top priority for policymakers, nongovernmental organizations, and international donors across Sub-Saharan Africa. In Kenya, nearly $600 million has been invested in extending the grid to rural areas since 2008. While there is now widespread grid coverage, the national household electrification rate remains relatively low. Kenya is currently pursuing a strategy of last-mile connections for “under grid” households in order to reach universal access to electricity by 2020. Given the high cost of subsidizing mass connections, however, there is a need for better understanding of the impacts of rural electrification. In this study, we will provide experimental evidence on the impacts of household electrification across a range of economic and social outcomes in Western Kenya. We will also examine the impacts of grid connections on neighboring households to better understand possible spillovers.

Between 2013 and 2015, we implemented a field experiment in which electricity connection vouchers (worth varying amounts) were randomly assigned to clusters of rural households in Western Kenya. Households accepting these vouchers were then connected to the national grid, in cooperation with Kenya’s Rural Electrification Authority (REA) and Kenya Power, the main electricity distribution company. As a result of this experiment, it is possible to perform a randomized evaluation of household grid connections. The study focuses on household survey data from baseline and follow-up surveys of 2,294 “main sample” households, as well as survey data from a follow-up survey of roughly 1,200 “secondary sample” households.²

1.2 Experimental design and steps

In this section, we describe the experimental design. For further details, see Lee et al. (2016) at http://dx.doi.org/10.1016/j.devecon.2015.12.001, Lee, Miguel, and Wolfram (2016a) at http://dx.doi.org/10.1257/aer.p20161097, and Lee, Miguel, and Wolfram (2016b) at http://www.nber.org/papers/w22292.

Step 1: In July 2013, we collaborated with REA to identify a list of 150 rural “transformer communities” that would form a representative sample of communities recently connected to

² The distinction between “main” and “secondary” sample households is described in Section 1.3.
the electrical grid in Busia and Siaya, two counties in Western Kenya. Each community is defined as all of the structures that were located within 600 meters of a central transformer.

Step 2: Between September 2013 and December 2013, we visited each community and geo-tagged over 13,000 structures, capturing the universe of unelectrified households that could potentially be connected to the national grid.

Step 3: Using these data as a sampling frame, we randomly sampled 2,504 households, consisting of 2,294 households that were unconnected at baseline and 205 households that were connected to the grid at baseline. The regressions described in Section 2.2 will focus on the group of 2,294 households. We use data from the sample of 210 connected households mainly for descriptive purposes, for example, to compare characteristics of households that had already connected without our subsidy to households that later connected with a subsidy. Between February and August 2014, we administered a detailed survey of each household, capturing baseline measures of living standards (“Living Standards Kenya (LSK) Survey – Baseline (2014)”).

Step 4: In April 2014, we randomly assigned the 150 communities into four groups: (1) “High-subsidy” (or 100% discount) arm with 25 communities, resulting in an effective price of $0; (2) “Medium-subsidy” (or 57% discount) arm with 25 communities, resulting in an effective price of $171; (3) “Low-subsidy” (or 29% discount) arm with 25 communities, resulting in an effective price of $284, and (4) “No subsidy” or control group (effective price of $398 plus wiring) with 75 communities.

Step 5: After distributing the electricity connection subsidies, we facilitated the construction of grid infrastructure to connect the 478 unconnected households that accepted the randomized offer. The first household was metered in September 2014, the average connection time was seven months, and the final household was metered over a year later, in October 2015.

Step 6: In May 2016, we launched a follow-up survey round targeting all 2,504 households enrolled during the baseline round, in addition to roughly 1,500 newly enrolled households from the same transformer communities. This new sample of 1,500 households will consist of roughly 1,200 households unconnected at baseline (i.e., those that were observed to be unconnected at the time of the baseline census), and roughly 300 connected households. The
secondary sample regressions described in Section 2.4 will focus on the group of 1,200 households unconnected at baseline. As noted in Step 3, we use data on the roughly 300 connected households, along with data on the 210 connected households in the baseline sample, mainly for descriptive purposes. Currently, we are administering a detailed follow-up survey of each household, capturing various measures of living standards ("Living Standards Kenya (LSK) Survey – Follow-up (2016)"). The follow-up survey round is expected to take place between May and October 2016.

1.3 Main and secondary samples

To summarize, our study will focus on two sets of households. The first set of households—which we refer to throughout this document as “main sample” households—consists of the 2,289 households that were unconnected to electricity at the time of the baseline survey. These households were randomly sampled using the baseline census data and are thus representative of the under grid population at baseline. Out of these 2,289 unconnected households, 1,139 were provided with opportunities to connect to the grid at a subsidized price, and 478 eventually chose to connect to the national grid. We have both baseline and follow-up survey data for the main sample households.

The second set of households—which we refer to as “secondary sample” households—will consist of the roughly 1,200 households that were observed to be unconnected at the time of the baseline census, but were not enrolled into the data collection during the baseline survey. These households were also randomly sampled using the baseline census data and are thus representative of the under grid population at baseline. Data from the secondary sample will allow us to study the spillover impacts of household electrification.

1.4 Analysis and data examined to date

At the time of registering this pre-analysis plan, we had collected follow-up survey information on over 3,500 households. Note that we did not perform any data analysis before registering this plan. As described in the document titled, “Note on data management/access and pre-analysis plan,” which was uploaded to the AEA RCT Registry on May 16, 2016, the authors of this pre-analysis plan were provided with access to de-identified survey data for roughly 400 surveys, at the very beginning of the survey round. These data were stripped of
any indicators that could expose the treatment status of households, and were provided in order to (1) allow the authors to identify and correct any coding errors in the survey instrument, (2) make improvements to the choice sets for multiple-choice questions, (3) identify and amend questions that were taking too much time to administer, (4) address any other technical issues with the survey instrument (for instance, with the SurveyCTO software coding), and (5) make any final additions to the survey instrument to address minor questions that came up. Each member of the research team agreed to follow the data management/access plan.

As a result of these early data quality checks, we learned that there were missing observations for a small number of variables. In order to address this issue, project field staff will revisit certain transformer communities at the end of the survey round to collect missing data. The analyses described in Section 2 will utilize the complete set of data. In the appendix, however, we will present additional robustness checks in which we drop all data that were re-collected at the end of the survey round.

The remainder of this pre-analysis plan is organized as follows. Section 2 describes the main regression specifications, heterogeneity analysis, and planned methods of multiple hypothesis correction, in addition to other topics. Section 3 describes the major outcomes of interest. This document captures our current thinking about analysis with this data, but we anticipate carrying out some additional analyses beyond those included in this plan. As such, this plan is not meant to be an exhaustive set of all analyses we plan on carrying out, but rather a core set of initial estimates that will hopefully inspire further analyses.

2. Analysis

2.1 General notes

Randomly lowering the price of an electricity connection at the community-level by 29, 57, and 100 percent, resulted in increases in take-up of 6%, 22%, and 95%, over the baseline, respectively.\(^3\) Take up in the low and medium subsidy treatment arms was relatively low. In our analysis, we will estimate both treatment-on-treated (TOT) and intention-to-treat (ITT) impacts of electrification. ITT estimates will be obtained from specifications in which various outcomes of interest are regressed on a set of binary variables indicating the treatment status of the community. TOT estimates will be obtained from two-stage least squares specifications in

\(^3\) See Lee, Miguel, and Wolfram (2016b) for details.
which the household’s electrification status, or the transformer community’s electrification rate, is instrumented with the set of treatment indicators.

Throughout this document, we refer to our subject population as “households.” In our setting, residential structures are typically located in compounds that can sometimes consist of multiple households. Our subject population consists of households that were considered to be the “main household” in the residential compound at the time of the baseline survey. To construct our sample, we randomly sampled compounds from each transformer community and enrolled the primary household in the compound. All other households in each compound are referred to as “minor households.”

In the majority of our main sample analyses, we will focus on the family of the respondent that was interviewed at baseline, regardless of whether the family is still living in the same location at the time of the follow-up survey. For certain outcomes, however, we will focus on the family (if any) that is currently living at the physical location where the baseline survey took place. This will allow us to examine an additional set of questions including, for example, whether locations that were electrified are more likely to remain inhabited, compared to locations that were not electrified.

2.2 Main sample impacts

We will first analyze the main sample and test the hypothesis that households connected to the electricity grid enjoy higher levels of living standards, and analyze effects on other economic and social outcomes. Using main sample data, we will estimate ITT results using the following equation:

\[y_{ic} = \beta_0 + \beta_1 T_{lc} + \beta_2 T_{mc} + \beta_3 T_{hc} + X_c \Lambda + Z_{1lc} \Gamma + \epsilon_{ic} \]

(1)

where \(y_{ic} \) represents the outcome of interest for main sample household \(i \) in community \(c \), and \(T_{lc}, T_{mc}, \) and \(T_{hc} \) are binary variables indicating whether community \(c \) was randomly assigned into the low-value, medium-value, and high-value subsidy treatment arms, respectively. Following Bruhn and McKenzie (2009), we include a vector of community-level characteristics, \(X_c \), containing the variables used for stratification during randomization. In addition, we include \(Z_{1lc} \), a vector of household-level characteristics. Further details on the components of the covariate vectors are presented in Section 2.7. The variables in \(Z_{1lc} \) will
sometimes be used in analyses of treatment effect heterogeneity, which is discussed in further detail in Section 2.8. In Section 2.10, we discuss the possibility of ANCOVA specifications for certain outcome variables. Standard errors will be clustered at the community level.

The issue of limited statistical power may be more severe in ITT specifications due to the relatively low take-up rates in the low and medium subsidy treatment groups. To address this issue, we will focus attention on the coefficient on the high subsidy treatment indicator. This test will not only shed light on the impacts of near universal electrification, but also is likely to have greater statistical power. The coefficients on the low and medium subsidy treatment indicators will also be of interest, since these will shed light on the average impacts of an electrification program with low take-up.\footnote{Note that the effective price of an electricity connection in the medium subsidy arm is $171 (or 15,000 KSh), which is the same price as that offered under the World Bank and African Development Bank-funded Kenya Last Mile Connectivity Project. These estimated effects are therefore likely to be of policy interest.}

We will also estimate TOT results using the following equations:

\[
E_{ic} = \delta_0 + \delta_1 T_{lc} + \delta_2 T_{Mc} + \delta_3 T_{HC} + X_i' A_1 + Z_{1ic}' \Gamma_1 + \eta_{ic} \tag{2}
\]

\[
y_{ic} = \beta_0 + \beta_1 E_{ic} + X_i' A_2 + Z_{1ic}' \Gamma_2 + \epsilon_{ic} \tag{3}
\]

where the first-stage equation 2 estimates the effects of the treatment indicators on household electrification status, E_{ic}, and the second-stage equation 3 estimates the effect of household electrification status on the various outcomes of interest. As in equation 1, errors will be clustered at the community level.

Lee, Miguel, and Wolfram (2016b) document systematic differences in the baseline living conditions of households taking up the experimental offers in the low and medium subsidy groups, compared to the high subsidy group. Households that paid more for an electricity connection (i.e., low subsidy arm households) were wealthier and more educated on average than those who paid nothing (i.e., high subsidy arm households). This suggests that the average treatment effect may vary across treatment arms. For example, electrification may be more impactful for the relatively wealthier households that are able to invest in complementary assets such as electrical appliances. In order to examine these types of heterogeneous treatment effects, we may explore the methods described in Kowalski (2016) to first recover bounds on average treatment effects for “always taker” and “never taker” households, and then decompose group average treated outcomes into selection and treatment effects. However, due to relatively
low take-up rates in the low and medium subsidy groups, these analyses may be statistically underpowered.

Although the experiment generated exogenous variation in household electrification status, there remain some challenges in econometric identification. For example, if there are substantial local spillovers for unconnected or connected households, the stable unit treatment value assumption (SUTVA) may not hold. In this case, it is methodologically preferable to focus on the ITT results, and in particular, the coefficient on the high subsidy treatment indicator since it has a clearer interpretation. We describe our plan to quantify spillovers in the next section.

2.3 Community-level outcomes

For community-level outcomes (which are specified in Section 3.12), we will estimate equations that are similar in form to those specified in Section 2.2, with the exception of two key differences. First, we will use both main and secondary sample data to construct the community-level outcomes of interest. Second, since the unit of observation is the community, we will exclude household-level covariates.

In the TOT specification to estimate community-level impacts, we will replace the \(E_{tc} \) term in equations 2 and 3 with \(R_c \), the estimated local transformer community electrification rate, which itself is a major outcome of interest. Note that for each transformer community, we have data on the universe of households (as well as their grid connection status) at the time of our baseline census. In addition, we have follow-up household survey data for the main and secondary sample households. Since we do not have updated census data for each transformer community, we will need to estimate the current rate. For each of the three treatment arms, we will calculate the average take-up rate for the portion of secondary sample households that were observed to be unconnected at the time of the baseline census. We will estimate \(R_c \) by combining actual follow-up take-up data among the surveyed households with estimated take-up data for the non-surveyed households (i.e., those observed to be unconnected at the time of the baseline census) in the relevant treatment group. Specifically, for each treatment arm, we will assume that all of the remaining, non-surveyed households connected to the grid at the treatment arm-level average take-up rate. For the control group communities, we will also include main sample households when calculating the control group take-up rate that will then
be applied to the non-surveyed control group households. See Section 3.12 for additional details on how we plan to construct community-level outcome variables.

2.4 Secondary sample impacts

We consider two types of potential spillovers. First, as shown in Bernard and Torero (2015), it is possible that an exogenous increase in the local electrification rate will encourage neighboring unconnected households to connect to the grid. In this case, we would expect to find higher electrification rates—as well as higher levels of willingness to pay for electricity—among secondary sample households in treatment communities, compared to control communities. We discuss our planned analysis of willingness to pay in Section 2.6. Second, it is possible that private grid connections result in economic and social impacts for neighboring households, for instance, if they sometimes use their neighbors’ power. In this case, we would expect to find improved living standards for secondary sample households located in treatment communities.

Using secondary sample data, we will estimate ITT results using the following equation:

\[y_{1c} = \beta_0 + \beta_1 T_{Lc} + \beta_2 T_{Mc} + \beta_3 T_{Hc} + X'_c \Lambda + Z'_{2ic} \Gamma + \epsilon_{ic} \]

(4)

where \(Z_{2ic} \) is the vector of household characteristics (see Section 2.7). We differentiate between \(Z_{1ic} \) and \(Z_{2ic} \) to account for a few covariates that are specific to either the main or secondary sample households. In order to concentrate attention on a coefficient with sufficient statistical power, we will again focus on the coefficient on the high subsidy treatment indicator, \(T_{Hc} \). Recall that secondary sample households in the high subsidy treatment arm are likely to have a far higher number of recently connected neighbors.

We will also estimate TOT results for the secondary sample, but will take a slightly different analytical approach. First, we will estimate the equations:

\[R_c = \delta_0 + \delta_1 T_{Lc} + \delta_2 T_{Mc} + \delta_3 T_{Hc} + X'_c \Lambda_1 + Z'_{2ic} \Gamma_1 + \eta_{ic} \]

(5)

\[y_{1c} = \beta_0 + \beta_1 R_c + X'_c \Lambda_2 + Z'_{2ic} \Gamma_2 + \epsilon_{ic} \]

(6)

where \(R_c \) is the estimated local transformer community electrification rate (described in Section 2.3 above). The first-stage equation 5 estimates the effects of the treatment variables on the
community electrification rate. The second-stage equation 6 estimates the effect of the community electrification rate on the household-level outcomes of interest. Second, we will estimate the set of equations:

\[
R_c = \delta_{0,R} + \delta_{1,R} T_{LC} + \delta_{2,R} T_{MC} + \omega_{0,R} d_{ic} + \omega_{1,R} (T_{LC} \times d_{ic}) + \\
\omega_{2,R} (T_{MC} \times d_{ic}) + \omega_{3,R} (T_{HC} \times d_{ic}) + X'_c \Lambda_r + Z'_{2ic} \Gamma_r + \eta_{ic,r}
\]

(7)

\[
r_{ic} = \delta_{0,r} + \delta_{1,r} T_{LC} + \delta_{2,r} T_{MC} + \delta_{3,r} T_{HC} + \omega_{0,r} d_{ic} + \omega_{1,r} (T_{LC} \times d_{ic}) + \\
\omega_{2,r} (T_{MC} \times d_{ic}) + \omega_{3,r} (T_{HC} \times d_{ic}) + X'_c \Lambda_r + Z'_{2ic} \Gamma_r + \eta_{ic,r}
\]

(8)

\[
y_{ic} = \beta_0 + \beta_1 R_c + \beta_2 r_{ic} + \omega_{0,2} d_{ic} + X'_c \Lambda_2 + Z'_{2ic} \Gamma_2 + \epsilon_{ic}
\]

(9)

where equations 7 and 8 are the first-stage equations and equation 9 is the second-stage equation. \(R_c\) is again defined as the estimated local transformer community electrification rate, \(r_{ic}\) represents the proportion of households within 200 meters of household \(i\) that are connected to electricity, and \(d_{ic}\) represents the proportion of households within 200 meters of household \(i\) that are in the main sample. We instrument \(r_{ic}\) with the treatment indicators, \(T_{LC}, T_{MC},\) and \(T_{HC},\) as well as \(d_{ic}\) and the interactions between \(d_{ic}\) and the treatment indicators. The second-stage equation 9 therefore estimates the effects of the community electrification rate, as well as being in close proximity to connected households, on the outcome \(y_{ic}\). Since there are multiple endogenous variables in this framework, equations (7), (8), and (9) will be estimated jointly.

The secondary sample analysis will allow us to determine whether there are any meaningful spillovers from household grid connections. This will in turn guide our interpretation of the main sample analysis in the ways noted above, especially in relation to the validity of the proposed instrumental variables approach. Note that it is challenging to precisely define the exact pattern of results that will allow us to conclude that the spillovers are “meaningful”. Broadly, if we estimate statistically significant spillover impacts on a number of key outcomes, then we will mainly focus on the main sample analysis ITT specifications rather than the TOT specifications in Section 2.2. Similarly, if we estimate statistically significant impacts on the connection rates of secondary sample households, the proposed instruments described in equations 5 through 9 would also violate the exclusion restriction and it may be preferable to focus on the ITT specification in equation 4.

2.5 Educational impacts
Another objective of this study is to understand the extent to which household electrification impacts the educational outcomes of schoolchildren. As part of the follow-up survey round, we administered short (roughly 15 minute) reading and math tests to all 12 to 15 year olds in our subject population. Using these data, we will estimate regressions that are similar in form to those specified in Sections 2.2 and 2.4 but will focus on individual children as the unit of observation. In these regressions, the covariate vectors Z_{1ic} (for the main sample) and Z_{2ic} (for the secondary sample) will be complemented with the covariate vector C_{jic}, which includes additional information on child j in household i in community c. The outcomes of interest in these specifications will therefore be denoted with the subscript jic. The covariate vector C_{jic} is described in more detail in Section 2.7.

2.6 Stated willingness to pay (WTP) for electricity

In the follow-up survey, we first ask respondents whether they would be hypothetically willing to connect to the national grid at a randomly selected price (i.e., *time unlimited offer*) (f3g in the follow-up survey). The randomly selected price, p, was drawn from the following set of prices (in Kenyan shillings):

$$\{0, 5000, 10000, 15000, 20000, 25000, 35000, 75000\}$$

This question was followed by an additional hypothetical question (f3h) asking the respondent whether they would accept an offer at this price if they were given only six weeks to complete the payment (i.e., *time limited offer*). Finally, respondents were asked whether they would be willing to pay a monthly amount over a period of three years, where the cumulative total is equal to the randomly selected price (f3i) (i.e., *financed offer*, with terms similar to those offered under the current Kenya LMCP). Respondents from connected households were asked a similar set of questions with somewhat different wording to reflect the fact that they are already connected (see f4g, f4h, and f4i).

We are interested in understanding how stated WTP responds to price levels. Specifically, we will estimate the following equation:

$$h_{ic} = \alpha_0 + \alpha_1 T_{Le} + \alpha_2 T_{Mc} + \alpha_3 T_{He} + \sum_p \beta_p W_{pic} + \sum_p \gamma_{1p} (W_{pic} \times T_{Le}) +$$
$$+ \sum_p \gamma_{2p} (W_{pic} \times T_{Mc}) + \sum_p \gamma_{3p} (W_{pic} \times T_{He}) + \chi_c'\Lambda + Z_{nic}'\Gamma + \epsilon_{ic}$$

(10)
where h_{ic} is a binary variable indicating the stated (or hypothetical) take-up decision for household i, W_{pi} is a binary variable indicating whether household i received the hypothetical price p, and Z_{nic} is the relevant household covariate vector. We are especially interested both in the direct effects of the treatment indicators, as well as the coefficients on the full set of interactions between the treatment indicators and the W_{nyc} terms. These interactions will shed light on how stated WTP may be different for households that were recently connected to the grid (e.g., using the main sample data), or for unconnected households that recently observed neighboring households become connected to the grid (e.g., using the secondary sample data).

We will estimate separate regressions for the main sample and the secondary sample, since the interpretation of the results will be slightly different for each case. Standard errors will be clustered at the community level.\(^5\) We will also test for heterogeneous effects, which are generally described in Section 2.8.

As in Lee, Miguel, and Wolfram (2016b), we will plot the stated WTP results graphically. For example, we may plot and compare demand curves for (1) time unlimited, time limited, and financed offers, (2) control households at baseline and at follow-up, (3) main sample households in the various subsidy arms and in the control group at follow-up, and (4) secondary sample households in the various subsidy arms and in the control group, as well as other leading comparisons.

2.7 Covariate vectors X_c, Z_{1ic}, Z_{2ic}, and C_{jic}

In this section, we describe each of the sets of covariates that we plan to utilize in the analysis.

The vector X_c will primarily include the stratification variables that were used during randomization. These include:

- **County**: Binary variable indicating whether community c is in Busia county or Siaya county.
- **Market status**: Binary variable indicating whether the total number of businesses in community c is strictly greater than the community-level mean across the entire sample.

\(^5\) Based on the results of Lee, Miguel, and Wolfram (2016b), we do not expect the relationship between take-up and price to be linear. However, we may still test for linearity, and if we cannot reject linearity in an F-test, we will also estimate an equation in which y_{ic} is regressed on p_{ic}, controlling for the treatment indicators and other covariates.
We use this definition to define which communities could be classified as “markets” relative to others.

- Transformer funding year: Binary variable indicating whether the electricity transformer in community c was funded “early” (i.e. in either 2008-09 or 2009-10).
- Electrification rate: Residential electrification rate in community c at the time of census (roughly 2013).
- Community population: Estimated number of people living in community c at the time of census (roughly 2013).

The vector Z_{1ic}, which will be included in regressions using the main sample data, will include the set of household-level variables listed below. Note that for the main sample households, we will be able to take advantage of the baseline survey data.

- Gender of respondent: Binary variable indicating whether the respondent is female.
- Age: Age of respondent in 2016.
- Education of respondent at baseline: Binary variable indicating whether the household respondent at baseline has completed secondary school.\(^6\)
- Bank account at baseline: Binary variable indicating whether the household respondent at baseline had a bank account.
- Housing quality index at baseline: Index composed of whether the household had high-quality floors, roof, and walls at baseline.
- Asset value at baseline: Estimated value based on inventory of livestock, electrical appliances, and non-livestock assets at baseline, at current observed local prices.
- Energy spending at baseline: Estimated monthly expenditures on all energy sources at baseline.

The vector Z_{2ic}, which will be included in regressions using the secondary sample data, will include the household-level variables listed below. Note that there is no baseline survey data for this sample of households.

- Gender of respondent: Binary variable indicating whether the respondent is female.
- Age: Age of respondent in 2016.

\(^6\) The respondent during the baseline survey is not necessarily the same person as the respondent during the follow-up survey.
- Local density: Total number of households in the transformer community within 200 meters.\(^7\)

The vector \(C_{jic}\) will include a set of individual-level characteristics that are relevant for the regression specifications estimating the impacts of electrification on educational performance.

- Gender of student: Binary variable indicating whether the student is female.
- Age: Age of student in 2016.
- Siblings: Number of children under 18 in the household.
- Grade attained at baseline (main sample only): Grade attained by the end of the 2013 academic year.\(^8\)

2.8 Heterogeneous effects

In additional analyses, we will estimate heterogeneous treatment effects along a number of major dimensions, captured in the vectors \(X_c, X_{1ic}, X_{2ic}\), and \(C_{jic}\), by adding interaction terms between each treatment indicator and these variables. For instance, in order to assess how treatment impacts may vary for households at different wealth levels, we will estimate specifications in which the treatment indicators are interacted with the housing quality index at baseline.

Furthermore, there are a number of additional (and potentially endogenous) variables that are not included in the covariate vectors above but are of potential interest. These include:

- Transformer outages in the community: Proportion of months (between September 2014 and October 2015) that the transformer was not working.
- Connection days: Approximate number of days since the household was first connected to electricity.
- Relationships with main sample households (for secondary sample households): Number of main sample households whose members are considered to be extended family of the secondary sample respondent.

\(^7\) In additional robustness checks, we will also carry out analysis using the total number of households in the transformer community within 400 meters.

\(^8\) We will infer this data by comparing the baseline and follow-up surveys for main sample households. It is possible that this data will be missing for a large number of observations. In these instances, we may include an additional binary variable indicating that the data are missing. Alternatively, we may choose to drop this covariate altogether if this data are missing for over 30% of possible values from collected surveys.
We are uncertain whether our study design will have sufficient statistical power to generate precise estimates on many of these interaction terms and hence such analyses should be considered suggestive rather than definitive. The patterns that emerge will also likely stimulate further exploratory analysis using the dataset.

2.9 Construction of indices

When constructing indices, we will normalize each component variable to have mean zero and unit variance, thereafter constructing the index by summing each component variable (the mean effects approach). Note that we will exclude any variables with zero variance since these do not contribute any information to the analysis. Furthermore, if a pre-specified variable is missing more than 30% of possible values from collected follow-up surveys, we will drop it from inclusion in the index. We cannot anticipate why a particular variable will be missing so frequently, but in such events where it warrants exclusion, we shall explore these reasons in the analysis. Finally, we will report all individual outcomes used to create indices in the appendix.

2.10 Multiple Testing Adjustment

In Section 3, we describe how the major outcomes of interest are categorized into ten broad “families”. For the main coefficient estimates of interest (for instance, β_1, β_2, and β_3 in equation 1) we will present two sets of p-values. First, we will present the standard “per-comparison”, or naïve, p-value, which is appropriate for a researcher with an a priori interest in a specific outcome. For instance, researchers interested in the effect of household electrification on non-agricultural compensation should focus directly on this p-value.

Second, since we test multiple hypotheses, it is also appropriate to control for the possibility that some true null hypotheses will be falsely rejected. Therefore, we will also present the false discovery rate (FDR)-adjusted q-value that limits the expected proportion of rejections within a hypothesis that are Type I errors (i.e., false positives). Thus, while a p-value is the unconditional probability of a Type I error, the analogous FDR q-value is the minimum proportion of false rejections within a family that one would need to tolerate in order to reject
the null hypothesis. Specifically, we will follow the approach to FDR analysis adopted in Casey et al. (2012) and the references cited therein (e.g., Anderson 2008).

2.11 Additional analyses

For a subset of outcomes in the main sample regressions, we will have both baseline and follow-up observations (e.g., household size, home solar system usage, energy consumption, etc.). In this case, we will also estimate ANCOVA regression specifications in which the baseline value of the outcome of interest is included as an additional covariate, as the resulting estimates may have greater statistical power (McKenzie 2012). However, note that we lack equivalent baseline measures for many outcome variables described below (in Section 3). This is particularly the case when the household respondent in the follow-up survey is not the same person as the household respondent in the baseline survey. As a result, the ANCOVA estimates will be presented mostly as a supplement. Our main focus will be on the results of the specifications described in Sections 2.2 and 2.4 above.

3. Major outcomes of interest

3.1 Overview

In this section, we specify 77 major economic and social outcomes of interest. These outcomes have been selected based on the judgment of the research team and are arranged into ten broad families: (1) energy consumption, (2) household structure, (3) time use, (4) productivity, (5) wealth, (6) consumption, (7) health and wellbeing, (8) education, (9) social and political attitudes, and (10) community outcomes. Based on this list, we also identify a group of ten “primary” outcomes, drawn from a number of different outcome families. The estimated impacts on these primary outcomes will serve as an overall summary of the impacts of household electrification in our setting. As discussed in Section 2.10, we will present FDR-adjusted q-values for each of the outcomes within the primary outcomes group, as well as FDR-adjusted q-values for each outcome within each of the ten outcome families. As noted in Section 1.4, we anticipate that we will examine additional outcomes beyond those included in this plan.

9 In this sense, false positives are driven not only by sampling variation for a single variable (the traditional interpretation of a p-value) but also by having multiple outcomes to test.
Within each outcome family, there are outcomes at different levels of aggregation, ranging from specific variables to indices that combine data from multiple variables. Due to the novelty of many of these measures, some of the groupings are speculative. We will therefore report measures of index quality and coherence in the appendix, for example, by examining the correlation patterns of measures within each index. Depending on the index quality, we may also perform additional analyses, for example, presenting results with alternative groupings of outcomes. For completeness and transparency, in the appendix, we will also present estimated impacts for all specific outcomes individually, including those used to construct each of the indices.

3.2 Primary outcomes

Table 1 summarizes the ten primary outcomes that will serve as an overall summary of living standards in our setting.

Table 1. Primary outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Description</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.1</td>
<td>Grid connected</td>
<td>HH</td>
<td>Indicator</td>
<td>Indicator for main household connection</td>
<td>1.1</td>
</tr>
<tr>
<td>P.2</td>
<td>Grid electricity spending</td>
<td>HH</td>
<td>Total</td>
<td>Estimated prepaid top-up last month or amount of last postpaid bill</td>
<td>1.7</td>
</tr>
<tr>
<td>P.3</td>
<td>Employed or own business - Household</td>
<td>HH</td>
<td>Proportion</td>
<td>Proportion of household members (18 and over) currently employed or running their own business</td>
<td>4.5</td>
</tr>
<tr>
<td>P.4</td>
<td>Total hours worked</td>
<td>Resp.</td>
<td>Total</td>
<td>Total hours worked in agriculture, self-employment, employment, and household chores in last 7 days</td>
<td>4.11</td>
</tr>
<tr>
<td>P.5</td>
<td>Total asset value</td>
<td>HH</td>
<td>Estimated value</td>
<td>Estimated value of savings, livestock, electrical appliances, and other assets</td>
<td>5.6</td>
</tr>
<tr>
<td>P.6</td>
<td>Annual consumption</td>
<td>HH</td>
<td>Value</td>
<td>Estimated value of annual consumption of 23 goods</td>
<td>6.2</td>
</tr>
<tr>
<td>P.7</td>
<td>Recent symptoms index</td>
<td>Resp.</td>
<td>Index</td>
<td>Index of symptoms experienced by the respondent over the past 4 weeks</td>
<td>7.3</td>
</tr>
<tr>
<td>P.8</td>
<td>Life satisfaction</td>
<td>Resp.</td>
<td>Scale</td>
<td>Life satisfaction based on a scale of 1 to 10</td>
<td>7.8</td>
</tr>
<tr>
<td>P.9</td>
<td>Average test score</td>
<td>Child</td>
<td>Z-score</td>
<td>Average of English reading test result and Math test result</td>
<td>8.3</td>
</tr>
<tr>
<td>P.10</td>
<td>Political and social awareness index</td>
<td>Resp.</td>
<td>Index</td>
<td>Index capturing the extent to which the respondent correctly answered a series of questions about current events</td>
<td>9.4</td>
</tr>
</tbody>
</table>

For certain primary outcomes, we are able to use the existing literature to guide our expectations on the impacts of electrification in our setting. For example, in South Africa,
Dinkelman (2011) finds that female employment rises by 9 to 9.5 percentage points and women work roughly 8.9 hours more per week. In Brazil, Lipscomb, Mobarak, and Barham (2013) find that the probability of employment increases by 17 to 18 percentage points, over the long run, in counties that are electrified. Taken together, we should expect to find substantial increases in the probability of employment (P.3) and labor hours (P.4), particularly for women. Furthermore, in the Philippines, Chakravorty, Emerick, and Ravago (2016) estimate that village-level electrification leads to an increase in household expenditures by 38 percent, suggesting that there will be large gains in household consumption (P.6). In terms of test scores (P.9), Hassan and Lucchino (2016) examine the impacts of randomly distributing solar lanterns to 7th grade pupils in Kenya and find math grades to increase by 0.88 standard deviations for treatment pupils. In our analysis of each primary outcome, we will test the null hypothesis and (wherever possible) the hypothesis that the treatment effect is the same as that found in the existing literature. Finally, we will compare the estimated impacts in our study to other outcomes in the broader development economics literature in order to assess the cost effectiveness of rural electrification as a development policy.

3.3 Family #1 – Energy consumption major outcomes

At the most basic level, electricity connections should impact the way in which households consume energy. Family 1 includes the major outcomes relating to access to and usage of different forms of energy.

Table 2. Energy consumption major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Grid connected</td>
<td>HH</td>
<td>Indicator</td>
<td>Indicator for main household connection</td>
<td>F1a</td>
</tr>
<tr>
<td>1.2</td>
<td>Electric lighting</td>
<td>HH</td>
<td>Indicator</td>
<td>Indicator for electricity as main source of lighting</td>
<td>F1b</td>
</tr>
<tr>
<td>1.3</td>
<td>Lighting usage</td>
<td>HH</td>
<td>Total</td>
<td>Hours of lighting used (past 24 hours)</td>
<td>F18</td>
</tr>
<tr>
<td>1.4</td>
<td>Installation</td>
<td>HH</td>
<td>Total</td>
<td>Number of electrical outlets available</td>
<td>F6b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of lighting sockets available</td>
<td>F6c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of power strips in use</td>
<td>F6e</td>
</tr>
<tr>
<td>1.5</td>
<td>Appliances owned</td>
<td>HH</td>
<td>Total</td>
<td>Number of “high-wattage” appliances owned(^{10})</td>
<td>F19a to F19c</td>
</tr>
<tr>
<td>1.6</td>
<td>Appliances desired</td>
<td>HH</td>
<td>Total</td>
<td>Number of “high-wattage” appliances desired</td>
<td>F19d to F19g</td>
</tr>
</tbody>
</table>

\(^{10}\) In general, we follow Lee, Miguel, and Wolfram (2016a) in the definition of high and low wattage appliances. For instance, there we define mobile phones and radios as “low-wattage” appliances.
1. Grid electricity spending
 HH Total Estimated prepaid top-up last month F7a to F7e, F5h
 Amount of last postpaid bill F8a to F8c, F5h

1.8 Kerosene spending
 HH Total Kerosene spending last month\(^{11}\) F11

1.9 Other energy sources spending\(^{12}\)
 HH Total Solar power spending last month F13d, F14d
 Battery spending last month F15b, F15c
 Generator spending last month F16c
 Purchased firewood spending last month F17a
 Charcoal spending last month F17b
 LPG spending last month F17c
 Sawdust spending last month F17d
 Mobile phone charging last month F17h
 Other spending last month F17e to F17g, F17i

1.10 Total energy spending
 HH Total Total spending last month on grid electricity, kerosene, and other energy sources See 1.7, 1.8, and 1.9 above

1.11 Home solar usage
 HH Indicator Indicator for usage of solar lantern or solar home system F12a

1.12 Power sharing
 HH Indicator Indicator for household is sharing its electricity connection (e.g., electricity connection shared with a minor household or a neighboring household) S1c, F5b, F5i, F5j

3.4 Family #2 – Household structure major outcomes

If there are changes in the patterns of energy consumption, there may also be changes in the structure of the household. For example, access to electricity may impact household structure by influencing incentives to migrate by making living in the household more attractive. Family 2 includes major outcomes relating to household structure, migration, and fertility.

Table 3. Household structure major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Household size</td>
<td>HH</td>
<td>Total</td>
<td>Total number of household members</td>
<td>Section A, hhsize</td>
</tr>
<tr>
<td>2.2</td>
<td>Inhabited location</td>
<td>HH</td>
<td>Indicator</td>
<td>Baseline structure currently inhabited</td>
<td>Staff records</td>
</tr>
<tr>
<td>2.3</td>
<td>Household stayed</td>
<td>HH</td>
<td>Indicator</td>
<td>Household did not move to a new location</td>
<td>Staff records, AA9</td>
</tr>
<tr>
<td>2.4</td>
<td>Members living elsewhere</td>
<td>HH</td>
<td>Total</td>
<td>Household members documented at baseline that are now living elsewhere</td>
<td>Section A</td>
</tr>
</tbody>
</table>

\(^{11}\) For several energy spending categories (including kerosene), we recorded how much the household spent over the past seven days. In these cases, we will estimate spending over the past month by multiplying the weekly amount by a factor of approximately 4.3.

\(^{12}\) This outcome will include all other energy-related expenditures recorded in the household survey, beyond grid electricity and kerosene.
2.5 Fertility Resp. Total Number of times respondent (or sexual partner) has been pregnant since January 2014 \(sH3_3num_m, sH3_3num_f\)

2.6 Local social interactions Resp. Total Number of times (over past week) neighboring respondents visited household and respondent visited neighboring households Section K

3.5 Family #3 – Time use major outcomes

Household electrification may operate as a labor saving technology shock to home production, releasing female time from home to market work (Dinkelman 2011; Grogan and Sadanand 2012). Family 3 includes individual time use outcomes.

Table 4. Time use major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Hours sleeping</td>
<td>Resp.</td>
<td>Hours</td>
<td>Sleeping (code 1)</td>
<td>L1 to L48</td>
</tr>
<tr>
<td>3.2</td>
<td>Hours studying</td>
<td>Resp.</td>
<td>Hours</td>
<td>Playing with children or helping with homework (code 13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Studying or attending class (code 16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: All codes representing “studying” in survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1 to L48</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Hours working</td>
<td>Resp.</td>
<td>Hours</td>
<td>Light farm work (code 22)</td>
<td>L1 to L48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heavy farm work (code 23)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fishing or hunting (code 24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Office/desk work (code 25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Light manual work (code 26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heavy manual work (code 27)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other (work and travel) (code 32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: All codes representing “work” in survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1 to L48</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Hours doing chores</td>
<td>Resp.</td>
<td>Hours</td>
<td>Cooking or preparing food (code 7)</td>
<td>L1 to L48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shopping for family (code 8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cleaning, dusting, sweeping, washing dishes or clothes, ironing, or doing other household chores (code 9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Taking care of others, such as bathing, feeding, or looking after children, the sick, or the elderly (code 12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fetching water or firewood (code 10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repairs in or around the home (code 11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Improving land or buildings (code 28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: All codes representing “chores” in survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1 to L48</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Hours enjoying leisure</td>
<td>Resp.</td>
<td>Hours</td>
<td>Rest, watching TV, listening to the radio, reading a book, watching a movie, watching sports, or sewing (code 6)</td>
<td>L1 to L48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Visiting or entertaining friends (code 14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Playing sports (code 17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spending time with spouse or partner (code 18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: All codes representing “leisure” in survey</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1 to L48</td>
<td></td>
</tr>
</tbody>
</table>
3.6 Family #4 – Productivity major outcomes

If electrification changes people’s time use, and, for example, allows for more hours of work outside the home, there may be positive impacts on various measures of productivity and wealth. The evidence on the impacts of electrification on productivity have been somewhat mixed. Dinkelman (2011), for example, finds evidence of increased female labor force participation in South Africa. Chakravorty, Emerick, and Ravago (2016) find large impacts of electrification on household income and expenditures in the Philippines, but attribute these impacts to increases in agricultural income rather than increases in labor force participation. In contrast, Burlig and Preonas (2016) find little to no impacts of electrification on various employment outcomes in rural India. Family 4 includes various measures of household agricultural activities, employment, small businesses, and other outcomes.

Table 5. Productivity major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Agriculture – Land use</td>
<td>HH</td>
<td>Proportion</td>
<td>Proportion of total land used for agricultural activities</td>
<td>C4a, C4b, D1c</td>
</tr>
<tr>
<td>4.2</td>
<td>Irrigation</td>
<td>HH</td>
<td>Indicator</td>
<td>Household used irrigation in last 12 months</td>
<td>D2e</td>
</tr>
<tr>
<td>4.3</td>
<td>Agriculture – Monthly revenue</td>
<td>HH</td>
<td>Total</td>
<td>Revenue from selling crops, Revenue from selling livestock or livestock products, Revenue from selling poultry or poultry products, Revenue from selling fish, Revenue from selling other agricultural produce Note: Household revenue over past month</td>
<td>D4a, D4c, D4e, D4g, D4i</td>
</tr>
<tr>
<td>4.4</td>
<td>Agriculture – Hours worked</td>
<td>Resp.</td>
<td>Total</td>
<td>Hours worked in agriculture in last 7 days</td>
<td>D3a</td>
</tr>
<tr>
<td>4.5</td>
<td>Employed or own business - Household</td>
<td>HH</td>
<td>Proportion</td>
<td>Proportion of household members (18 and over) currently employed or running their own business</td>
<td>A8b</td>
</tr>
<tr>
<td>4.6</td>
<td>Business at household</td>
<td>HH</td>
<td>Indicator</td>
<td>Business operated out of household compound</td>
<td>sE1_15cdescpremise, sE1_51otherbus</td>
</tr>
<tr>
<td>4.7</td>
<td>Employed or own business – Individual</td>
<td>Resp.</td>
<td>Indicator</td>
<td>Currently self-employed, running a business, employed, or working for pay</td>
<td>sE1_1selfemp, sE2_1employed</td>
</tr>
<tr>
<td>4.8</td>
<td>Employed or own business – Individual monthly compensation</td>
<td>Resp.</td>
<td>Total</td>
<td>Monthly compensation, sum of last month compensation across all jobs and businesses</td>
<td>sE2_11, sE1_9ap Ashton, sE1_56profit</td>
</tr>
</tbody>
</table>

13 Grimm et al. (2015), for instance, present a theoretical model in which an increase in household electrification effectively reduces the price of energy faced by the household, which increases the productivity of domestic labor and the output of household production.
3.7 Family #5 – Wealth major outcomes

In terms of wealth, Lipscomb, Mobarak, and Barham (2013) find evidence of higher average housing values as a result of electrification in Brazil. Family 5 includes a housing quality index and estimated values of different types of household assets, based on current market prices.

Table 6. Wealth major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Savings</td>
<td>Resp.</td>
<td>Total</td>
<td>Savings in mobile bank account</td>
<td>G2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Savings in SACCO, merry-go-round, or ROSCA</td>
<td>G2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Savings in formal bank account</td>
<td>G2c</td>
</tr>
<tr>
<td>5.2</td>
<td>Housing quality</td>
<td>HH</td>
<td>Index</td>
<td>Indicator for high-quality floors</td>
<td>C1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicator for high-quality roof</td>
<td>C1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indicator for high-quality walls</td>
<td>C1c</td>
</tr>
<tr>
<td>5.3</td>
<td>Value of livestock assets</td>
<td>HH</td>
<td>Estimated value</td>
<td>Value of chickens owned</td>
<td>C8a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of cattle owned</td>
<td>C8b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of goats owned</td>
<td>C8c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of pigs owned</td>
<td>C8d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of sheep owned</td>
<td>C8e</td>
</tr>
<tr>
<td>5.4</td>
<td>Value of appliance assets</td>
<td>HH</td>
<td>Estimated value</td>
<td>Value of listed electrical appliances</td>
<td>F19a to F19c</td>
</tr>
<tr>
<td>5.5</td>
<td>Value of other assets</td>
<td>HH</td>
<td>Estimated value</td>
<td>Value of beds owned</td>
<td>C7a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of bednets owned</td>
<td>C7b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of kerosene stoves owned</td>
<td>C7c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of kerosene lamps owned</td>
<td>C7d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of hoes owned</td>
<td>C7e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of bicycles owned</td>
<td>C7f</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of motorcycles owned</td>
<td>C7g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of cars or trucks owned</td>
<td>C7h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Value of sofa piece seats owned</td>
<td>C7i</td>
</tr>
</tbody>
</table>
3.8 Family #6 – Consumption major outcomes

We are interested in estimating the impacts of electrification on various measures of household consumption, including a novel “neediness” index, developed in Ligon (2015). The neediness index is a measure of the marginal utility of expenditures and therefore household welfare. Unlike traditional total consumption expenditure measures, it does not impose an assumption of linear Engel curves. Instead, the index exploits differences in the composition of consumers’ consumption bundles, which vary with household welfare. In order to construct the index, Ligon (2015) suggests collecting information on a subset of key consumption items for which variation in expenditures is closely related to changes in marginal utility (and thus welfare). By appropriately weighting the consumption of each of the key items, we can obtain a summary measure of household welfare. In our setting in Western Kenya, we will focus on 23 items, including staples, vegetables, meat, fruits, and other goods. These 23 items were identified using data from the Kenya Life Panel Survey (KLPS-3). Based on the KLPS-3 data, the 23 items account for 26% of total household consumption and 52% of total food consumption.

Table 7. Consumption major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Neediness index</td>
<td>HH</td>
<td>Index</td>
<td>Consumption of each of 23 goods over past twelve months, constructed according to the measure in Ligon (2015)</td>
<td>M5, M7, M8</td>
</tr>
<tr>
<td>6.2</td>
<td>Annual consumption</td>
<td>HH</td>
<td>Value</td>
<td>Estimated value of annual consumption of 23 goods</td>
<td>M5, M7, M8</td>
</tr>
<tr>
<td>6.3</td>
<td>Consumption diversity</td>
<td>HH</td>
<td>Index</td>
<td>Indicators for whether household has consumed each of 23 goods over the past twelve months</td>
<td>M1</td>
</tr>
<tr>
<td>6.4</td>
<td>Meals</td>
<td>Resp.</td>
<td>Total</td>
<td>Total number of meals eaten yesterday</td>
<td>sH1_1meals</td>
</tr>
<tr>
<td>6.5</td>
<td>Protein meals</td>
<td>Resp.</td>
<td>Total</td>
<td>Total number of meals eaten yesterday including meat or fish</td>
<td>sH1_2ameat</td>
</tr>
</tbody>
</table>

3.9 Family #7 – Health and wellbeing outcomes

Electricity has been found to improve respiratory health by reducing indoor air pollution (Barron and Torero 2015). Some people may also be happier when they have access to

14 The KLPS-3 project is located in the same study region as this project and is led by PI Edward Miguel and other researchers. In the full KLPS survey, respondents are asked in detail about their consumption of 153 items.
electricity due to impacts on various channels. Family 7 includes various measures of respondent health and wellbeing.

Table 8. Health and wellbeing major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Respiratory illness index</td>
<td>Resp.</td>
<td>Index</td>
<td>Persistent cough
Asthma/breathlessness at night
Note: Experienced over past 4 weeks</td>
<td>sh1_7bcough
sh1_7sasthma</td>
</tr>
<tr>
<td>7.2</td>
<td>Respiratory illness index - Child</td>
<td>Child</td>
<td>Index</td>
<td>Frequent cough
Itchy or stinging eyes
Sore throat
Runny nose
Asthma or breathlessness
Note: Experienced over past 7 days</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Recent symptoms index</td>
<td>Resp.</td>
<td>Index</td>
<td>Fever
Persistent cough
Persistent tiredness
Stomach pain
Blood in stool
Rapid weight loss
Frequent diarrhea
Skin rash or irritation
Open sores/boils
Difficulty swallowing
Sores or ulcers on the genitals
Asthma/breathlessness at night
Frequent and excessive urination
Constant thirst/increased drinking of fluids
Unusual discharge from the tip of penis (for men only)
Other symptoms
Note: All symptoms experienced over past 4 weeks</td>
<td>sh1_7afever
sh1_7bcough
sh1_7ctired
sh1_7d stom ach
sh1_7fstool
sh1_7g weight loss
sh1_7h diarrhoea
sh1_7iskin
sh1_7jboils
sh1_7kswallow
sh1_7pgenitalsore
sh1_7sasthma
sh1_7tfrequ urine
sh1_7uthirst
sh1_7wdischarge
sh1_7xother</td>
</tr>
<tr>
<td>7.4</td>
<td>Recent illnesses index</td>
<td>Resp.</td>
<td>Index</td>
<td>Worms
Malaria
Typhoid
Tuberculosis
Diabetes
Cholera
Yellow fever
Note: All illnesses experienced over past 4 weeks</td>
<td>sh1_7eworms
sh1_7mmalaria
sh1_7ntyphoid
sh1_7otb
sh1_7vdiabetes
sh1_7qcholera
sh1_7ryellow</td>
</tr>
<tr>
<td>7.5</td>
<td>Recent illnesses index - Child</td>
<td>Child</td>
<td>Index</td>
<td>Malaria
Fever
Note: All illnesses experienced over past 4 weeks</td>
<td></td>
</tr>
</tbody>
</table>

A-98
Typhoid Note: All symptoms experienced over past 7 days

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6</td>
<td>Subjective health</td>
<td>Resp.</td>
<td>Indicator</td>
<td>Self-described health is either “good” or “very good”</td>
<td>sH1_13healthgd</td>
</tr>
<tr>
<td>7.7</td>
<td>Subjective health - Child</td>
<td>Child</td>
<td>Indicator</td>
<td>Self-described health is either “good” or “very good”</td>
<td>T3.4</td>
</tr>
<tr>
<td>7.8</td>
<td>Life satisfaction</td>
<td>Resp.</td>
<td>Scale</td>
<td>Life satisfaction based on a scale of 1 to 10</td>
<td>J9b</td>
</tr>
</tbody>
</table>

3.10 Family #8 – Education outcomes

It is possible that electrification may improve educational outcomes for students, if better lighting allows for more evening study time, for instance. The evidence, however, has been somewhat mixed to date. Randomized trials, including Furukawa (2014) and Hassan and Lucchino (2016), have focused on measuring the impacts of decentralized power solutions, such as solar lanterns, and have documented results ranging from negative impacts to positive impacts with substantial spillovers. Studies on the impacts of grid connections have been mostly non-experimental and have found positive impacts of electrification on school enrollment, study time, and school completion (see, e.g., Khandker et al. 2012). Family 8 includes a variety of educational outcomes, including test scores from English and Math tests that were administered to students in the sample villages by our project field staff.

Table 9. Education major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Component(s)</th>
<th>Survey data</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>English score</td>
<td>Child</td>
<td>Z-score</td>
<td>English reading test result</td>
<td>T1</td>
</tr>
<tr>
<td>8.2</td>
<td>Math score</td>
<td>Child</td>
<td>Z-score</td>
<td>Math test result</td>
<td>T2</td>
</tr>
<tr>
<td>8.3</td>
<td>Average test score</td>
<td>Child</td>
<td>Z-score</td>
<td>Average of English reading test result and Math test result</td>
<td>T1, T2</td>
</tr>
<tr>
<td>8.4</td>
<td>Study hours - Total</td>
<td>Child</td>
<td>Total</td>
<td>Self-reported hours spent studying during the day</td>
<td>T3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-reported hours spent studying during the night</td>
<td>T3.2</td>
</tr>
<tr>
<td>8.5</td>
<td>Study hours - Night</td>
<td>Child</td>
<td>Total</td>
<td>Self-reported hours spent studying during the night</td>
<td>T3.2</td>
</tr>
<tr>
<td>8.6</td>
<td>Attendance index</td>
<td>Child</td>
<td>Index</td>
<td>Fully completed first week of school last term</td>
<td>B2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fully completed last week of school last term</td>
<td>B2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Completed end of term exams last term</td>
<td>B2d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fully completed first week of school this term</td>
<td>B2e</td>
</tr>
<tr>
<td>8.7</td>
<td>Grades</td>
<td>Child</td>
<td>Score</td>
<td>Marks (scaled out of 100) earned last term</td>
<td>B2f</td>
</tr>
<tr>
<td>8.8</td>
<td>Ambitions</td>
<td>Child</td>
<td>Indicator</td>
<td>Student planning to attend post-secondary education</td>
<td>T3.7</td>
</tr>
</tbody>
</table>

15 We will create Z-scores by subtracting the mean and dividing by the standard deviation in the control group, within our own sample using age-gender groups.
3.11 Family #9 – Social and political attitudes outcomes

Electrified households may consume more media content (via televisions, radios, and internet access), and as a result, could have greater knowledge of current affairs, or experience changes in social and political attitudes.

Table 10. Social and political attitudes major outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Details</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Radio</td>
<td>Resp.</td>
<td>Total</td>
<td>Days in the past week respondent listened to the radio</td>
<td>J2a</td>
</tr>
<tr>
<td>9.2</td>
<td>Television</td>
<td>Resp.</td>
<td>Total</td>
<td>Days in the past week respondent watched television</td>
<td>J2c</td>
</tr>
<tr>
<td>9.3</td>
<td>Internet</td>
<td>Resp.</td>
<td>Total</td>
<td>Days in the past week respondent used the internet</td>
<td>J2d</td>
</tr>
<tr>
<td>9.4</td>
<td>Political and social awareness index</td>
<td>Resp.</td>
<td>Index</td>
<td>Knows date of next election</td>
<td>J1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows name of the president of Tanzania</td>
<td>J1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows name of the president of Burundi</td>
<td>J1c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows name of a candidate in the 2016 U.S. presidential election</td>
<td>J1d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows name of the CEO of Safaricom</td>
<td>J1e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows name of the Managing Director of Kenya</td>
<td>J1f</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows the intended recipients of the Kenyan national government’s Free Laptop program</td>
<td>J1i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows who was responsible for the 2015 terrorist attacks at Garissa University</td>
<td>J1j</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows which team won the 2015-2016 English Premier League</td>
<td>J1g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knows who sings the pop song “Sura Yako”</td>
<td>J1h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: These are all binary variables</td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>Approval of national government index</td>
<td>Resp.</td>
<td>Index</td>
<td>Trusts national government</td>
<td>J5g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uhuru Kenyatta is doing a good job as president</td>
<td>J7a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Government is doing a good job fighting terrorism</td>
<td>J7b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Government corruption is not a problem in Kenya</td>
<td>J7d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Government is doing a good job ensuring that electricity is provided in Kenya</td>
<td>J7g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Binary variable indicating “agree” or “strongly agree”</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>Gender equality index</td>
<td>Resp.</td>
<td>Index</td>
<td>It is acceptable for a woman to be a bus driver</td>
<td>J6a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Important decisions of the family should only be made by the man of the family</td>
<td>J6b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If the wife is working outside the home, the husband should help her with household chores</td>
<td>J6c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women should have more opportunities to become political leaders</td>
<td>J6d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Binary variable indicating “agree” or “strongly agree”</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Ethnic identity index</td>
<td>Resp.</td>
<td>Index</td>
<td>Ethnic identity is “important” or “very important” in respondent’s life</td>
<td>J4e</td>
</tr>
</tbody>
</table>
3.12 Family #10 – Community outcomes

There are a number of community-level outcomes that are of interest in this study. For example, Bernard and Torero (2015) find that take-up of electricity may be higher in communities where electricity is more prevalent. Therefore, a key outcome of interest in our study is whether the subsidy treatments impacted the proportion of secondary sample households choosing to connect to electricity. In addition, it is possible that electricity can lead to actual or perceived within-village inequality, in income, educational outcomes, and consumption. In order to estimate the impacts of electrification on within-community inequality, we will take advantage of our random sample of households and calculate Gini coefficients, capturing within-community dispersion, using the productivity (Family 4), wealth (Family 5), education (Family 8), and consumption (Family 6) outcomes in our data.16

Table 11. Community primary outcomes

<table>
<thead>
<tr>
<th>ID</th>
<th>Outcome</th>
<th>Unit</th>
<th>Type</th>
<th>Details</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Community electrification rate</td>
<td>Com.</td>
<td>Proportion</td>
<td>Estimated community electrification rate</td>
<td>See Section 2.3</td>
</tr>
<tr>
<td></td>
<td>Community electricity reliability index</td>
<td>Com.</td>
<td>Index</td>
<td>Proportion of connected households reporting power blackouts in past 7 days</td>
<td>F10c, F10d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proportion of connected households reporting regular blackouts</td>
<td>F10e</td>
</tr>
<tr>
<td>10.4</td>
<td>Value of assets inequality</td>
<td>Com.</td>
<td>Index</td>
<td>Gini coefficient capturing within-community dispersion in total asset value</td>
<td>See 5.6 above</td>
</tr>
</tbody>
</table>

16 Note that we will weight observations according to their proportions (e.g. main sample, secondary sample, etc.) households in the baseline community census data.
<table>
<thead>
<tr>
<th>10.5</th>
<th>Education inequality</th>
<th>Com.</th>
<th>Index</th>
<th>Gini coefficient capturing within-community dispersion in student test score results</th>
<th>T1, T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>Consumption inequality</td>
<td>Com.</td>
<td>Index</td>
<td>Gini coefficient capturing within-community dispersion in total consumption of 23 consumption goods</td>
<td>M5, M7, M8</td>
</tr>
<tr>
<td>10.7</td>
<td>Perceived income inequality</td>
<td>Com.</td>
<td>Proportion</td>
<td>Proportion of respondents agreeing with statement that economic inequality is a problem in this village</td>
<td>J7e</td>
</tr>
</tbody>
</table>

References

Barron, Manuel, and Maximo Torero. 2015. “Household Electrification and Indoor Air Pollution.”

