The pattern of global land use has important implications for the world’s food and timber supplies, bioenergy, biodiversity and other eco-system services. However, the productivity of this resource is critically dependent on the world’s climate, as well as investments in, and dissemination of improved technology. This creates massive uncertainty about future land use requirements which compound the challenge faced by individual investors and governments seeking to make long term, sometimes irreversible investments in land conversion and land use. This study assesses how uncertainties associated with underlying biophysical processes and technological change in agriculture affect the optimal profile of land use over the next century, taking into account the potential irreversibility in these decisions. A novel dynamic stochastic model of global land use is developed, in which the societal objective function being maximized places value on food production, liquid fuels (including bio-fuels), timber production, and biodiversity.
Areas of Focus: Climate Change, Climate Science, Environment
Definition
Climate Change
Climate change is an urgent global challenge. EPIC research is helping to assess its impacts, quantify its costs, and identify an efficient set of policies to reduce emissions and adapt...
Definition
Climate Science
EPIC’s interdisciplinary team of researchers is contributing to a cross-cutting body of knowledge on the scientific causes of climate change and its social consequences.
Definition
Environment
Producing and using energy damages people’s health and the environment. EPIC research is quantifying the social costs of energy choices and uncovering policies that help protect health while facilitating growth.