Drought-induced agricultural loss is one of the most costly impacts of extreme weather, and without mitigation, climate change is likely to increase the severity and frequency of future droughts. The Dust Bowl of the 1930s was the driest and hottest for agriculture in modern US history. Improvements in farming practices have increased productivity, but yields today are still tightly linked to climate variation and the impacts of a 1930s-type drought on current and future agricultural systems remain unclear. Simulations of biophysical process and empirical models suggest that Dust-Bowl-type droughts today would have unprecedented consequences, with yield losses ∼50% larger than the severe drought of 2012. Damages at these extremes are highly sensitive to temperature, worsening by ∼25% with each degree centigrade of warming. We find that high temperatures can be more damaging than rainfall deficit, and, without adaptation, warmer mid-century temperatures with even average precipitation could lead to maize losses equivalent to the Dust Bowl drought. Warmer temperatures alongside consecutive droughts could make up to 85% of rain-fed maize at risk of changes that may persist for decades. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively respond to, and minimize, the impacts of the next extreme drought event.
Areas of Focus: Climate Change, Climate Science
Definition
Climate Change
Climate change is an urgent global challenge. EPIC research is helping to assess its impacts, quantify its costs, and identify an efficient set of policies to reduce emissions and adapt...
Definition
Climate Science
EPIC’s interdisciplinary team of researchers is contributing to a cross-cutting body of knowledge on the scientific causes of climate change and its social consequences.