High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rain-fed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modeled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

Areas of Focus: Climate Change
Definition
Climate Change
Climate change is an urgent global challenge. EPIC research is helping to assess its impacts, quantify its costs, and identify an efficient set of policies to reduce emissions and adapt...
Climate Science
Definition
Climate Science
EPIC’s interdisciplinary team of researchers is contributing to a cross-cutting body of knowledge on the scientific causes of climate change and its social consequences.
Environment
Definition
Environment
Producing and using energy damages people’s health and the environment. EPIC research is quantifying the social costs of energy choices and uncovering policies that help protect health while facilitating growth.